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Abstract. Current AI reasoning often relies on static pipelines (like
the 4R cycle from Case-Based Reasoning (CBR) or standard Retrieval-
Augmented Generation (RAG)) that limit adaptability. We argue it is
time for a shift towards dynamic, experience-grounded agentic reaso-
ning. This paper proposes EXAR, a new unified, experience-grounded
architecture, conceptualizing reasoning not as a fixed sequence, but as a
collaborative process orchestrated among specialized agents. EXAR inte-
grates data and knowledge sources into a persistent Long-Term Memory
utilized by diverse reasoning agents, which coordinate themselves via a
Short-Term Memory. Governed by an Orchestrator and Meta Learner,
EXAR enables flexible, context-aware reasoning strategies that adapt
and improve over time, offering a blueprint for next-generation AI.
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1 Introduction

Case-Based Reasoning (CBR) has long provided a well-founded methodology
for solving problems through the reuse of experience in the form of cases. Since
the seminal work by Aamodt and Plaza [1], the CBR community has developed
robust methods for implementing the 4R cycle–retrieve, reuse, revise, and retain–
and has demonstrated their effectiveness in a wide range of applications. How-
ever, CBR has typically been applied in well-defined, bounded problem spaces,
where case structures, similarity measures, and adaptation knowledge can be ex-
plicitly engineered and maintained, causing considerable knowledge engineering
efforts [4].

In contrast, recent advances in large language models (LLMs) [39], retrieval-
augmented generation (RAG) [11], and agentic hybrid reasoning systems (e.g.,
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[13, 30, 38]) have shifted the focus of AI research towards open-ended, dynamic,
and incompletely modeled environments. These systems rely on external infor-
mation retrieval, tool usage, and generative reasoning to solve problems that
cannot be exhaustively predefined. However, they still suffer from hallucination,
are constrained by limited context windows, typically lack persistent and struc-
tured memory, do not support experience-based analogical reasoning, and offer
only rudimentary mechanisms for reflection and continuous learning from their
own problem-solving behavior.

Recent research has begun to explore the integration of CBR with LLM-based
approaches, for example, by using LLMs to support retrieval and adaptation in
CBR, or by embedding structured case memory in LLM-centric architectures. A
recent research manifesto by Bach et al. [3] articulates this emerging convergence
and proposes a systematic integration of CBR into neuro-symbolic and agentic
AI paradigms.

In this paper, we propose EXAR, a unified architecture for Experience-
Grounded Agentic Reasoning that generalizes both traditional CBR and modern
RAG systems. We argue that it is time to break the CBR cycle, originally con-
ceived as “cycle of sequential steps” [1] and to overcome the rigidity of static
RAG pipelines, in favor of plan-based, goal-directed orchestration of reasoning
processes. In this agentic perspective, reasoning steps such as retrieval, adap-
tation, prompt construction, symbolic inference, LLM-based generation, evalua-
tion, and reflection are dynamically selected and composed based on the problem,
context, memory state, and task goals. We envision that this orchestration pro-
cess is itself experience-grounded: it can learn from problem-solving traces over
time and adapt its internal control flow accordingly. The resulting architecture
enables the integration of symbolic and sub-symbolic reasoning services under
the control of a persistent, structured memory of heterogeneous knowledge units.
This positions CBR not only as a technique, but as the conceptual backbone for
building explainable, adaptive, and modular reasoning agents and presents a re-
newed view of CBR as a central enabler of explainable, adaptive, and modular
AI agents.

The remainder of this paper is structured as follows: Section 2 presents the
state-of-the-art in CBR, LLMs, and their integration, as well as recent multi-
agent architectures in agentic hybrid reasoning. Section 3 introduces our pro-
posed experience-grounded agentic reasoning architecture, EXAR. Section 4 dis-
cusses interpreting existing CBR-LLM approaches within the EXAR architec-
ture. Section 5 outlines challenges related to employing EXAR, and Section 6
describes initial implementation steps. The paper is summarized, and an outlook
is provided in Section 7.

2 State-of-the-Art

Recent research has begun to explore the interplay between Case-Based Reaso-
ning (CBR) and large language models (LLMs) [3], as well as their integration
into more complex, agentic reasoning architectures.
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2.1 Using LLMs for CBR Tasks

A growing number of approaches have explored the use of large language models
to support individual components of the CBR cycle. Most prominently, LLMs
have been applied to case adaptation [20], which is traditionally one of the
most knowledge-intensive steps. Prompt-based adaptation strategies allow LLMs
to transform retrieved solutions to fit new problems, either through zero-shot
instruction prompting or in-context few-shot prompting using similar past cases.
In addition, LLMs have been explored as similarity assessors [21,34], for example,
by generating structured feature comparisons between cases and queries or by
paraphrasing case descriptions to normalize semantic variations. More recently,
LLMs have also been employed to generate new cases from existing ones from
unstructured text corpora, such as manuals or web data, reducing the burden
of manual case authoring [7, 29], or to aid in the creation of the vocabulary of
the cases [7]. A first study has shown that LLMs can be effectively embedded
into CBR pipelines to improve flexibility and expressiveness, although challenges
remain with regard to consistency, control, and explainability [32].

2.2 Using CBR to Overcome LLM Weaknesses

Although LLMs demonstrate impressive fluency and generalization, they suf-
fer from several well-documented limitations, including hallucinations, lack of
long-term memory, poor control over reasoning behavior, and static knowledge
based on the training data cutoff. In this context, CBR has been proposed as a
means to ground LLM outputs in a structured, verifiable experience. Case-based
memory structures can serve as an external memory layer for LLMs [33], en-
abling more context-aware and traceable reasoning. When integrated into RAG
pipelines, case bases provide targeted, high-quality prompt context, outperform-
ing unstructured retrieval from generic corpora [36]. Moreover, the reuse of past
cases as exemplars for few-shot prompting allows for context-sensitive generaliza-
tion, with better alignment to task-specific constraints [9]. CBR also contributes
to explainability and traceability in LLM-based systems. Since each generated
output can be linked back to specific retrieved cases, the reasoning trace be-
comes more interpretable and auditable [12]. Additionally, CBR structures en-
able reflection mechanisms, such as evaluating past outcomes, detecting failure
patterns, and adapting future behavior accordingly, thus addressing key deficits
in LLM autonomy.

2.3 Agentic Hybrid Reasoning

Beyond isolated interactions between CBR and LLMs, recent work has shifted to-
ward agentic architectures that embed reasoning processes within autonomous,
tool-using agents [13, 30, 38]. In such systems, reasoning is modeled not as a
fixed pipeline, but as a dynamic sequence of actions selected to achieve a goal,
possibly involving multiple modalities and memory structures. Multi-Agent ar-
chitectures such as CAMEL [23], and MetaGPT [15] exemplify this trend. These
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systems operationalize reasoning through combinations of LLM-based genera-
tion, retrieval, tool use, subgoal formation, and reflection. However, most of
them lack persistent, structured long-term memory and cannot effectively reuse
prior problem-solving experience in a structured way. To address this, emerging
proposals suggest augmenting agentic reasoning with case-based memory sys-
tems that serve both as episodic storage and strategic reasoning guidance [33].
This hybridization opens the door to plan-based orchestration of reasoning steps,
such as retrieval, reuse, adaptation, generation, and validation, selected dynam-
ically based on the current goal, task context, and memory state. In this view,
CBR evolves from a standalone reasoning paradigm into a core memory and
control structure within agentic, neuro-symbolic reasoning systems, supporting
explainability, modularity, and continuous learning.

3 The EXAR Architecture

We introduce EXAR, a unified architecture for Experience-Grounded Agentic
Reasoning, designed to integrate the core concepts of CBR, RAG, and other
reasoning paradigms within a dynamic agentic control architecture. EXAR aims
to overcome the limitations of static reasoning pipelines, such as in CBR and,
thus, to overcome the “cycle of sequential steps” [1]. In the following, we present
an architectural overview of EXAR. Afterwards, we discuss the individual layers
of the architecture and their specific tasks and relationships to other layers in
the architecture.

3.1 Architecture Overview

Figure 1 provides an overview of the proposed EXAR architecture, which is
structured into four conceptual layers. The Data & Knowledge Layer encom-
passes all domain-relevant information sources within a given application con-
text such as databases, documents, logs, or distributed information silos, but
also implicit expert knowledge of humans. This layer represents what is some-
times referred to as the organizational memory in enterprise settings. In a pre-
processing step, this information is extracted, analyzed, and partially formalized
into (semi-)structured entities, which we refer to as Knowledge Units (KUs).
These KUs are persistently stored in the Long-Term Memory (LTM) and serve
as the primary knowledge base for reasoning. The core reasoning processes take
place in the Neuro-Symbolic Reasoning Layer, which consists of a set of inter-
acting reasoning agents. These include the classical CBR and RAG processing
steps as well as potentially other reasoning methods, including the usage of tools
by the agents. The agents exchange reasoning artifacts and intermediate results
via a shared Short-Term Memory (STM) that reflects the dynamic reasoning
state, functionally similar to nodes in a search or inference graph. The overall
reasoning flow is governed by the Orchestrator (sometimes also called Controller
in the literature [30]), which selects, configures, and activates agents based on
the current task, context, and internal reasoning state. This enables flexible,
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Fig. 1. Architecture Overview of EXAR.

plan-based reasoning strategies that go beyond static pipelines, breaking the
sequential structure of the traditional CBR cycle, and overcome the rigidity of
static RAG pipelines in favor of dynamic, goal-directed orchestration of reaso-
ning processes. A dedicated Meta Learner observes the ongoing reasoning process
in an introspective manner. It captures reasoning experience, detects patterns,
and supports the continuous improvement of orchestration strategies by feeding
learned meta-knowledge back into the Orchestrator. Finally, the Environment
Layer represents the external environment in which the problem solver oper-
ates. It provides interfaces for interacting with users (e.g., via GUI, chat, or XR
interfaces), external systems (e.g., cyber-physical systems, web applications, or
even humans), and input/output modalities (e.g., problem definitions, solution
delivery, explanations). Problem instances are supplied by the environment and
solutions are communicated back upon completion. In the following, we provide
a detailed description of each component of the EXAR architecture.
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While EXAR adopts an agent-oriented architecture, it differs from classi-
cal multi-agent systems (MASs). In EXAR, reasoning agents do not represent
autonomous entities with individual goals, but instead form a coordinated, goal-
aligned cognitive agency whose internal collaboration is centrally orchestrated
to solve a single problem instance.

3.2 Data and Knowledge Sources

The envisioned EXAR architecture aims to leverage a wide range of heteroge-
neous knowledge sources, depending on the specific domain and problem-solving
context. First, structured data such as relational databases, formal process mod-
els or plans, system configurations, architectural layouts, code, or sensor readings
could serve as important inputs for reasoning. Second, unstructured data sources,
including free-text documents, technical or service reports, documents with em-
bedded tables and figures, or even audio, images and video recordings, represent
valuable but often underexploited reservoirs of domain knowledge. Third, EXAR
is intended to incorporate formally represented knowledge, such as ontologies,
knowledge graphs, rule bases, or planning domain models, to support symbolic
reasoning. Finally, a crucial knowledge source is the tacit expertise of human
domain experts, which requires explicit elicitation and formal structuring.

To make this heterogeneous knowledge usable for structured reasoning, EXAR
proposes a transformation process that extracts and formalizes content into a
persistent, queryable representation in the LTM. This transformation involves
data connectors, parsers tailored to specific formats and structures, and informa-
tion extraction techniques, including those based on fine-tuned LLMs. Addition-
ally, interactive knowledge engineering approaches, potentially LLM-supported,
are foreseen to capture and formalize implicit expert knowledge. The outcome
of this process is a set of KUs, designed to encapsulate diverse knowledge rep-
resentations in a form that reasoning agents can effectively access and process
within the EXAR architecture.

3.3 Long-Term Memory

The LTM in EXAR serves as a persistent and structured memory layer for storing
all relevant forms of knowledge and experience in the form of KUs. It extends the
classical notion of knowledge containers from CBR [28] by supporting a broader
range of representation formats, abstraction levels, and storage technologies.
KUs typically result from pre-processing external sources, but may also emerge
dynamically during neuro-symbolic or meta-reasoning processes.

Each KU comprises (a) a content component, which may include text frag-
ments (chunks), prompt templates, time series, RDF/OWL graphs, logical rules,
planning models, similarity functions, structured cases, or reasoning traces; (b)
an index component supporting access and retrieval, which may consist of key-
words, embeddings, or semantic annotations; (c) a confidence score estimating
its trustworthiness; and (d) provenance information, such as the original source,
transformation history, or generation context.
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The LTM supports index construction and persistent storage using index-
specific technologies such as vector databases, triple stores, graph databases,
relational databases, or case bases. It enables various retrieval strategies, in-
cluding keyword search, lexical search, SQL, SPARQL, and similarity-based re-
trieval using embeddings or explicitly modeled similarity measures. Validation
is supported through consistency checking, external fact sources, or LLM-based
judging, which may contribute to generating or updating confidence scores. Ad-
ditionally, reflection on stored content, e.g., for summarization, generalization,
abstraction, or improvement of retrieval performance through similarity learning
or reorganization of KUs, is envisioned. In this way, the LTM constitutes a con-
tinuously evolving knowledge base that supports all reasoning activities within
the EXAR architecture.

3.4 Reasoning Agents

According to the introduced neuro-symbolic reasoning layer, EXAR conceptual-
izes reasoning not as a monolithic process, but as the interaction of specialized
agents that operate over a shared STM. This agent-based structure enables mod-
ular, compositional, and dynamically orchestrated reasoning strategies that go
beyond classical pipelines such as the CBR 4R cycle or standard RAG flows.
Agents are activated by the Orchestrator and exchange reasoning artifacts via
the STM, allowing for both parallel and sequential execution of reasoning steps
under a unified control model. The Orchestrator is also responsible for the man-
agement of the STM, e.g., for the deletion of entries after a (sub)task is com-
pleted successfully. Each agent is intended to perform a specific reasoning func-
tion such as retrieving knowledge, transforming representations, constructing
plans, generating content, or evaluating outcomes while contributing to a larger,
goal-oriented reasoning plan. This modular decomposition allows for fine-grained
control, reuse of reasoning capabilities across tasks, and introspection through
the Meta Learner. To achieve their goals, the agents may use tools to interact
with other systems, such as running inference of neural networks, invoking APIs,
running symbolic planners, or using the Python interpreter.

A first group of agents, the Analyze agents, supports the analysis and trans-
formation of high-level queries or problem descriptions. These agents decompose
tasks, interpret user intent, and translate input into internal representations
for downstream reasoning. They may generate subgoals, planning templates,
or structured queries. Retrieve agents perform retrieval in the sense of CBR
and RAG, using symbolic conditions, semantic similarity, embeddings, or hy-
brid techniques to access relevant knowledge units from the LTM. They may
exploit learned similarity models, ontological constraints, LLM supported query
expansion, or decomposition.

Adapt agents are responsible for transforming retrieved knowledge units into
usable solutions. They realize the reuse phase in CBR and may rely on hand-
crafted rules, learned operators, or LLM-based adaptation patterns. These agents
can operate with explicit knowledge or learn their behavior from prior traces and
reflective feedback. They implement structured problem-solving methods such
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as automated planning, rule-based inference, or constraint propagation. They
operate on formal representations like logical rules, RDF graphs, or planning
domains and may complement or refine outputs from other agents. Closely re-
lated are generate agents, which invoke LLMs or other generative models to
produce problem solutions, content fragments, summaries, or completions. Such
agents may be general purpose or tailored to domain-specific tasks.

Another group of agents (the Optimize Agents) focuses on prompt construc-
tion and optimization. These agents generate or refine prompts for generative
models based on task context, user input, and current STM content, possibly
optimizing for efficiency, coherence, or robustness.

To ensure output quality, EXAR includes verification agents, sometimes
called judge agents. They verify results using consistency checks, symbolic sys-
tems, confidence estimation, or LLM-based grading, and feed their assessments
into the STM, enabling downstream validation, feedback loops, and reflection—
similar to the revise phase of the 4R cycle. Furthermore, these traces can be
used to fine-tune agents using Reinforcement Learning with Verifiable Rewards
(RLVR) [19]. Finally, act agents manage interaction and communication with the
environment. They include user-facing interfaces such as chat or GUI agents.

This agent structure enables EXAR to integrate diverse reasoning paradigms
such as retrieval based, rule based, model driven, and generative methods into a
unified architecture, guided by dynamic orchestration and continuously improved
through meta-level learning.

3.5 Orchestrator and Meta Learner

The orchestration component in EXAR governs the reasoning process by select-
ing, configuring, and sequencing reasoning agents according to the task, context,
and internal system state. Rather than relying on a fixed reasoning cycle, EXAR
envisions a spectrum of orchestration strategies, ranging from static pipelines to
dynamically generated reasoning plans.

At the more static end of this spectrum, the Orchestrator may follow prede-
fined reasoning procedures, such as the classical CBR 4R cycle or standard forms
of RAG, where the sequence of retrieval followed by generation is fixed. Advanced
variants of RAG such as iterative, recursive, or adaptive RAG extend this prin-
ciple with limited feedback or multi-step reasoning but still rely on relatively
rigid control flows. Such configurations are suitable for well-understood domains
and recurring problem types with minimal variance in reasoning demands.

Toward the dynamic end of the spectrum, EXAR anticipates more flexible
orchestration based on plan generation or search. This includes reasoning work-
flows that are dynamically constructed depending on the current problem state,
retrieved knowledge, and prior experience. Approaches such as Process-Oriented
CBR (POCBR) can be employed to represent and adapt reasoning strategies ex-
plicitly, treating reasoning steps as composable process fragments. In more com-
plex cases, the Orchestrator may apply planning techniques or utilize learned
reasoning graphs to construct agent execution sequences on demand.
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The Meta Learner supports the Orchestrator by observing and analyzing exe-
cuted reasoning processes over time. Its function is to reflect on the effectiveness,
efficiency, and quality of reasoning strategies and to improve future orchestration
decisions accordingly. This reflection process may rely on techniques developed
in POCBR to adapt process structures or may employ Reinforcement Learn-
ing (RL) to optimize agent selection and sequencing based on task outcomes
and performance signals. The results of meta-level reasoning are represented as
new knowledge and stored persistently in the LTM in the form of knowledge
units, enabling continuous learning and improvement of reasoning control. This
corresponds to the retain phase in CBR, enabling reflective control learning.

Together, the Orchestrator and Meta Learner enable EXAR to shift from
static reasoning pipelines toward context-sensitive, adaptive, and experience-
grounded orchestration of diverse reasoning capabilities.

3.6 Environment
The environment layer in EXAR provides the interface between the reasoning
system and its external world. It serves as the entry and exit point for problem-
solving activities by enabling interaction with users, application systems, or
physical environments. The environment component is essential for embedding
EXAR into real-world scenarios, as it supports the acquisition of problem infor-
mation, the delivery of solutions, and the communication of intermediate reaso-
ning steps.

This interface may take different forms depending on the deployment context.
It can be realized as a standalone user interface for entering queries, interacting
via chat, or managing reasoning sessions. It may also be integrated into existing
application software, acting as a reasoning backend that receives tasks from
the host system and returns results or suggestions. In more immersive or sensor-
based environments, the interface could include XR-based components for visual
reasoning support or a direct connection to a cyber-physical system that provides
sensor data and receives control actions.

The primary function of the environment interface is to obtain all relevant
information required to define a problem instance. This includes user goals, con-
straints, preferences, and contextual events from technical systems. The second
core function is to deliver solutions, recommendations, or action plans back to
the user or connected systems in a structured and actionable way.

To foster transparency and user trust, the interface should also support visu-
alization and simulation of reasoning processes and allow explanation of proposed
solutions. This enables users and systems to assess the plausibility, applicability,
and consequences of alternative outcomes, thus supporting informed decision-
making in complex environments.

4 Existing Work in Light of EXAR

Table 1 provides an overview of current work in the intersection of CBR and
LLMs, interpreted in the context of our proposed EXAR architecture. This
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overview is divided into more general methodologies consisting of CBR/POCBR,
RAG, and agentic reasoning (see Sect. 2) and concrete hybrid approaches com-
bining several of these general methods. For this purpose, we conducted a litera-
ture review of papers published by the CBR research community, with a focus on
the proceedings of the International Conference on Case-Based Reasoning (IC-
CBR). In this process, we selected six papers that propose a hybrid approach
that combines CBR and LLMs. These papers are interpreted in the context of
the EXAR architecture in the accompanying table, illustrating the generality of
the proposed architecture.

Table 1. Applying EXAR Components to Existing Approaches.

Approach Data & Knowledge Long-Term
Memory

Neuro-
Symbolic
Reasoning

Environment

CBR/POCBR [1,25] Mostly structural data Cases Retrieve
Adapt
Verify

Domain-generic

RAG [11] Mostly unstructured
text and/or images

Text chunks with
Embeddings

Retrieve
Generate
Optimize
Verify

Domain-generic

Agentic Reasoning [15,23] Structured or
unstructured data

N/A Analyze
Retrieve
Adapt
Generate
Optimize
Verify
Act

Domain-generic

CBR-RAG [36] Unstructured legal
documents

Textual cases
consisting of Q–A
pairs

Retrieve
Generate

Domain experts asking
legal questions

CBR-Ren [10] Unstructured financial
documents with text,
numbers, and tables

Textual cases
with explanations

Retrieve
Generate

Domain experts doing
financial analysis

RAG for Explaining
Business Process
Models [26]

Structured data in
form of business
processes

Procedural and
textual cases with
process model
explanations

Retrieve
Generate

Domain experts
needing BPM
explanations

On Implementing
CBR with LLMs [34]

Structured
medical-triage
dataset

Attribute-value
case for each
patient with triage
decision

Retrieve
Adapt
Generate

Domain experts
making triage
decisions

Adapting Graphs with
WordNet and LLMs [20]

Structured argument
graphs, lexical
data

Graph cases,
vector features,
adaptation rules

Adapt
Verify

Domain experts
searching for
arguments

LLsiM [21] Structured data Preference relations,
similarity configs

Retrieve
Generate

Domain-generic
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5 Research Challenges

Based on the analysis of existing work and our own experience in building
CBR systems integrating neuro-symbolic aspects, we propose a set of open re-
search challenges. Although by no means exhaustive, this first version touches
on the most important aspects of the proposed architecture. For a more general
overview of challenges related to CBR and LLMs, we refer the interested reader
to Bach et al. [3].
Data and Knowledge
C1 (Multimodality). How to represent and process multimodal knowledge sources
(text, images, video, etc.) in a unified way?
C2 (Vectorization). When to use vector representation and when to use sym-
bolic representation? How to combine both?
C3 (Expert Knowledge). How to elicit and formalize expert knowledge in a way
that is usable for reasoning?
Short-Term and Long-Term Memory
C4 (Reflection). How to reflect on the stored knowledge to keep it relevant and
maintainable?
C5 (Conflicts). How to resolve potential conflicts from different knowledge sour-
ces? Should they be merged or kept separate?
C6 (Merging). How to update the LTM with new external information or
learned knowledge from the STM?
Reasoning Agents
C7 (Design). How to design agents that are specialized enough to be effective,
but general enough to be reusable across different tasks?
C8 (Prompting). How to migrate away from manual prompt engineering to
programmatic prompt generation?
C9 (Cost). How to balance the cost of LLM generations and agent executions
with the need for high-quality results?
Orchestrator and Meta Learner
C10 (Safety). How to safely execute agents in a sandboxed environment while
allowing interaction with required resources?
C11 (Determinism). How to deal with non-deterministic results obtained from
the reasoning agents?
C12 (Coupling). How strong should the agents be coupled? Should they be
allowed to communicate directly or only through the STM?
C13 (Planning). How to select reasoning agents and generate, store, and re-use
execution plans for them in a cost-effective manner?
Environment
C14 (Interaction). How to design appropriate interaction types that allow for
deep integration of the environment?
C15 (Personalization). How to incorporate potential needs for personalization
for different users?
C16 (Explainability). How to provide introspection into the reasoning process
to increase user trust?
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6 First Steps Towards Implementation

While EXAR is presented as a conceptual architecture, its realization can build
upon a variety of existing frameworks and libraries that address key components
of the system. This section outlines suitable technologies that provide starting
points for implementing each layer of the EXAR architecture. As the field is
expanding rapidly, the selection of libraries and tools should be understood as a
starting point, not a complete overview.

The diverse data sources from the Data and Knowledge Layer can be parsed
and structured by popular libraries such as LangChain [8] or LlamaIndex [24],
which support document ingestion, text chunking, metadata extraction, and
embedding-based indexing, which are essential for transforming heterogeneous
data into structured knowledge units (KUs). Transformer-based neural networks
are increasingly used for various pre-processing steps such as the text extraction
from documents like PDFs. HuggingFace offers a variety of models accessible
through the transformers library [37].

The Long-Term Memory in EXAR requires persistent and queryable storage
of KUs across multiple knowledge representations. Triple stores such as Apache
Jena [2] support RDF and OWL-based KUs, while relational databases such as
PostgreSQL offer scalable indexing1. Case-based reasoning components of the
long-term memory can be implemented using the CBRkit [22], which provides
reusable similarity functions, case models, and retrieval mechanisms, or Pro-
CAKE [5], which additionally supports process-oriented CBR and structural
reasoning on complex case representations.

In the Reasoning Layer, a wide variety of reasoning agents can be realized
using existing tools and libraries. Adaptation agents can rely on symbolic tools,
such as AI planning systems like FastDownward [14]. Libraries like Outlines [35]
can help to generate well-formatted inputs for the symbolic tools. For gener-
ative agents, the transformers library [37] or dedicated inference libraries like
vLLM [18] or SGLang [40] offer a wide support of models. Prompt engineering
and optimization agents can be supported by frameworks like DSPy [17], which
enable prompt programming and evaluation in structured workflows. Verifica-
tion agents can use tools such as VAL [16], which can verify the validity of PDDL
files.

The Orchestrator in EXAR may initially rely on fixed execution templates
using standard orchestration libraries such as LangChain [8], LlamaIndex [24] or
CBRkit [22]. More advanced agent-based orchestration can draw from emerging
multi-agent frameworks like CAMEL [23] or PydanticAI [27] which allow dy-
namic, goal-driven interaction between agents. Process-oriented reasoning strate-
gies can be modeled using ProCAKEs [5] process adaptation mechanisms. For
the Meta Learner, machine learning libraries such as TorchRL [6] or verl [31] can
be used to learn orchestration policies based on reasoning traces, performance

1 PostgreSQL also support vectors through extensions such as pgvec-
tor(https://github.com/pgvector/pgvector)
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signals, or feedback loops. Experience and strategy knowledge resulting from
meta-reasoning can be represented and stored in the LTM as KUs.

The interaction with the Environment Layer can be realized using a variety
of interface frameworks, for example by providing humans with a chat interface
or a GUI or by interacting with the world through APIs.

These existing tools offer a solid foundation for implementing the components
of EXAR. While no single framework covers all architectural elements, their
combination enables flexible and modular prototyping of experience-grounded
agentic reasoning systems.

7 Summary and Outlook

In this paper, we propose EXAR, a unified architecture for hybrid agentic reaso-
ning. The aim of EXAR is to provide the basis for a more flexible orchestration of
reasoning pipelines. This is not only relevant in the context of RAG approaches,
but also in CBR, where the rather static “cycle of sequential steps” [1] should be
broken up for a more flexible use of the CBR methodology. EXAR consists of four
individual layers (i.e., Data & Knowledge, Long-Term Memory, Neuro-Symoblic
Reasoning and Environment) that describe how knowledge can be transferred
into a long-term memory, which is in turn used by agents to perform reaso-
ning tasks in an environment. The main module of EXAR is the Neuro-Symbolic
Reasoning layer, which enables the flexible orchestrator of individual reasoning
agents to solve a faced problem by using a shared short-term memory. The Meta
Learner component enables the self-incremental learning of the agents for future
problem-solving situations.

In the future, we want to provide a reference implementation for the EXAR
architecture, which can be used by the CBR-LLM research community. As a
starting point, we extended our CBRkit library [22] with a synthesis module
consisting of built-in LLM providers and prompting functions for straightfor-
ward integration of retrieval and adaptation results with the capabilities of-
fered by generative AI models. Our vision is to provide an integrated framework
for building experience-grounded applications that is both easy-to-use and cus-
tomizable enough to support a wide range of use cases. In addition, we plan
an extended literature review to demonstrate that existing approaches by the
CBR research community can be interpreted in the EXAR architecture. Finally,
we aim to evolve our own CBR approaches in alignment with the EXAR archi-
tecture, thereby creating a foundation for integrated implementations and joint
research initiatives.
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