
A Framework for Supporting the Iterative Design
of CBR Applications⋆

Guillermo Jimenez-Diaz1 , Mirko Lenz2,3 , Lukas Malburg2,3 , Belén
Díaz-Agudo1 , and Ralph Bergmann2,3

1 Department of Software Engineering and Artificial Intelligence
Instituto de Tecnologías del Conocimiento

Universidad Complutense de Madrid, Spain
{gjimenez,belend}@ucm.es

2 Artificial Intelligence and Intelligent Information Systems, Trier University,
54296 Trier, Germany, www.wi2.uni-trier.de

info@mirko-lenz.de, {malburgl,bergmann}@uni-trier.de
3 German Research Center for Artificial Intelligence (DFKI)

Behringstraße 21, 54296 Trier, Germany, ebls.dfki.de
{mirko.lenz,lukas.malburg,ralph.bergmann}@dfki.de

Abstract. Iterative design is a well-known methodology that involves
prototyping, testing, analyzing, and refining products or processes. Rapid
prototyping and evaluation are crucial, enabling designers to quickly
identify and resolve issues and iteratively improve the design. However,
effective iterative design relies on tools that accelerate both prototype
creation and visual evaluation. This paper aims to address this chal-
lenge by presenting a framework specifically designed to enhance the
iterative design process for CBR applications. In this context, we em-
phasize the manual and knowledge-intensive task of defining similarity
measures. Furthermore, we introduce a proof-of-concept implementation
of this framework based on the CBRkit toolkit and the SimViz visualiza-
tion tool. We studied the capabilities to support the iterative design of
CBR applications through a case study in the prototypical cars domain.

Keywords: Case-Based Reasoning · Iterative Design · CBR Frame-
works · Rapid Prototyping · Visualization · Similarity · CBRkit · SimViz

1 Introduction

The Case-Based Reasoning (CBR) literature provides various frameworks de-
signed to streamline the design and implementation of CBR applications (see [20]
for a comprehensive review). One of the most challenging aspects of CBR devel-
opment is gaining a deep understanding of the domain and constructing effective
similarity measures that accurately capture its intricacies. Several approaches
exist to tackle this problem [18]. A common method is manual programming,

⋆ The Version of Record is available online: doi.org/10.1007/978-3-031-96559-3_17

https://orcid.org/0000-0003-4070-825X
https://orcid.org/0000-0002-7720-0436
https://orcid.org/0000-0002-6866-0799
https://orcid.org/0000-0003-2818-027X
https://orcid.org/0000-0002-5515-7158
https://www.wi2.uni-trier.de
https://ebls.dfki.de
https://doi.org/10.1007/978-3-031-96559-3_17


2 G. Jimenez-Diaz et al.

where domain experts define similarity functions based on predefined heuris-
tics and rules. Another approach involves learning from data, where machine
learning techniques are applied to automatically infer similarity measures from
case examples. Regardless of the chosen option, modeling similarity measures
is a critical and multifaceted task that requires an iterative modeling-testing
loop. Visualizations play a key role in overcoming intrinsic modeling challenges
by offering intuitive insights and improving the understanding of complex rela-
tionships within the data. As evidenced by previous approaches (e.g., [13,3,17]),
visual tools facilitate expert-assisted methodologies that seamlessly integrate hu-
man expertise with computational techniques. By leveraging expert knowledge,
these tools guide the development of similarity measures while iteratively refining
them through systematic testing and feedback.

This paper aims to improve CBR development by integrating visualization
techniques with CBR frameworks, helping developers and making CBR more ac-
cessible, especially to those outside the research community. To address the com-
plexities of building CBR systems and designing effective similarity measures, we
apply iterative design [6], a well-established methodology involving prototyping,
testing, analyzing, and refining a product or process. This approach improves
design quality and functionality by using system interaction as a research tool to
continuously refine and evolve the project. Developers create a prototype, test
and analyze it, refine it based on feedback, and repeat the cycle to converge
toward an optimal solution.

Although individual CBR frameworks provide structured methodologies for
designing CBR applications and there are some initial approaches to visualizing
similarity measures during their construction [21,8], there is currently a lack of
flexible solutions that integrate seamlessly into existing CBR frameworks. As a
result, assessing the impact of modifications in similarity measures on similarity
assessments remains a significant challenge. This issue is particularly critical in
CBR, as the retrieval of relevant cases is heavily based on well-designed similarity
measures, which, in turn, influence subsequent phases of the reasoning process.

Specifically, we demonstrate how the CBRkit framework [11] can be inte-
grated with the SimViz approach [8] to facilitate the design of CBR systems in
this paper. This integration involves identifying their inter dependencies, deter-
mining the necessary metadata for similarity measure computation, and explor-
ing methods for visualizing and dynamically recalculating results when similarity
measures are modified by the CBR developer. The emphasis of CBRkit on usabil-
ity and integration capabilities, such as seamless compatibility with visualization
tools like SimViz, makes it an ideal choice for researchers and practitioners aim-
ing to build CBR systems. Through its streamlined design, CBRkit reduces the
complexity of implementing CBR solutions while maintaining adaptability to
diverse application scenarios.

The main contribution of this paper is the design and implementation of a
framework to support the iterative design process for creating CBR similarity
measures in CBR systems. This paper represents the integration effort between
CBRkit [11] a flexible and modular framework designed to simplify the devel-



Framework for Supporting the Iterative Design of CBR Applications 3

opment and deployment of Case-Based Reasoning systems, and SimViz [8], an
exploratory visualization tool aimed at understanding and identifying errors in
both data and similarity measures. CBRkit supports customizable similarity
measures and allows users to tailor the framework to specific domain require-
ments, and SimViz visualizations provide insight into the similarity between local
and global attributes across different case representations. We propose an ap-
plied methodology using the CBRkit-SimViz tandem to ensure systematic devel-
opment and evaluation for designing, prototyping, and evaluating CBR systems.

The paper is structured as follows: Section 2 reviews several CBR frame-
works from a visualization perspective. Based on this literature review, in Sec-
tion 3 we describe the proposed design framework and identify the requirements
that should be met to support the CBR development cycle and enhance under-
standing of the domain, data, and similarity measures. Section 4 describes the
architecture and implementation of the integrated system, focusing on the data
flow between CBRkit (design and prototype) and SimViz (evaluate). We use the
cars domain, which includes rich attribute diversity and relationships charac-
teristic of many real-world similarity modeling challenges, for demonstrating a
step-by-step CBR development cycle with SimViz visualization during the de-
sign phase. The cars domain has been extensively used in CBR research as a
standard benchmark to illustrate core concepts and methodologies [24,15,12].

Section 5 concludes the paper by reviewing key lessons learned from the
integration of these tools and outlining future research lines.

2 State-of-the-Art

Iterative design emerged as a need in the 1980s for the development of user
interfaces and with the rise of the discipline of Human-Computer Interaction [6].
It attempts to solve the problems of designing new interfaces and adapting them
to users, rather than training users to use them. The foundations of iterative
design lie in the development of “cheap” prototypes whose purpose is to test
a design idea. The performance of the prototype is evaluated with users, and a
new design is proposed based on the evaluation findings. Iterative design methods
have become standard in software development and management and are applied
in different methodologies such as Spiral Development [5], Scrum [22], or Lean
Software Development [19], among others. The iterative design cycle is more
effective when the iterations are fast enough to determine whether a solution has
value. Rapid prototyping and evaluation are crucial, enabling designers to quickly
identify and address issues and iteratively improve the design. This requires tools
that accelerate both prototype creation and the analysis of user feedback.

Visualization techniques play a vital role in this process, enabling users to
quickly grasp the results of design choices, evaluate prototypes, and facilitate
rapid adjustments. Effective evaluation requires the ability to visually access
detailed information, connect disparate data points, identify patterns and devi-
ations, and explore information from multiple perspectives [25]. In the context
of CBR, the design of effective similarity measures is critical, and existing CBR



4 G. Jimenez-Diaz et al.

frameworks enable the development of tailored CBR prototypes and further sup-
port this rapid iteration. Visualizations serve as powerful evaluation tools that
help to understand information [1]. Interactive visualizations empower evalua-
tors by allowing them to dynamically select, manipulate, and refine the displayed
information, tailoring the visualization to their specific evaluation goals and en-
hancing its effectiveness.

In the following sections, we explore approaches and methods relevant to
integrating visualization techniques for interactive design within CBR systems.
This exploration is twofold: First, we examine the interactive design support
provided by current CBR frameworks, based on Schultheis et al. [20]. Second,
we discuss visualization approaches for interactive design, particularly during
the key similarity measure modeling phase in CBR. Finally, we synthesize these
contributions and identify the research gaps that motivate this paper.

2.1 Support of Interactive Design in CBR Frameworks

Schultheis et al. [20] present a review of open source CBR frameworks used
to develop specific CBR applications. The authors compare the following CBR
frameworks: CloodCBR, eXiT*CBR, jColibri, myCBR, and ProCAKE. In addi-
tion, they define a framework as “[...] a generic, domain-independent, and ex-
tensible software component that enables the implementation of specific appli-
cations.” [20, p. 327]. All CBR frameworks have been compared in terms of sup-
ported CBR types and case representations, support to implement the knowledge
containers, the CBR phases that can be applied, interfaces, and other additional
features. In the following, we compare the results of the review, with a special
focus on the visualization capabilities of the CBR frameworks and their support
for interactive design. Based on this detailed analysis, we are able to identify
current gaps in visualization techniques and derive requirements for developing
suitable interactive design capabilities for CBR systems.

CloodCBR is a CBR framework that supports the development of textual and
structural CBR applications. Regarding visualization capabilities, Schultheis et
al. [20] determine that a web-based GUI is provided as a dashboard to visu-
alize the CBR cycle. eXiT*CBR supports the development of structural CBR
applications. A GUI is provided for configuration, to perform retrievals, data
export, and the visualization of the results. jColibri is a Java-based CBR frame-
work that supports the development of textual, structural, and conversational
CBR applications. The framework provides a GUI for configuration and visu-
alization tools for the case base. myCBR supports the development of textual
and structural CBR applications. It is the only CBR framework that provides a
GUI for modeling similarity measures and thus supports the interactive design
of similarity measures. ProCAKE is a CBR framework that enables develop-
ers to create textual, structural, and process-oriented CBR applications. The
framework provides a GUI for visualization and the creation of cases.



Framework for Supporting the Iterative Design of CBR Applications 5

2.2 Approaches for Visualization of Similarity Measures

In addition to the support of interactive design to model similarity measures in
CBR frameworks, there exist several visualization approaches and methods that
can be beneficial for this purpose.

Schultheis et al. [21] present a visualization approach that helps to under-
stand the similarity assessment of complex cases in the context of process-
oriented CBR. For this purpose, three adopted visualization techniques have
been used with the aim of supporting the design of similarity measures. Sim-
ilarly, the SimViz approach [8] is a tool for visualizing similarity functions. It
offers a web-based GUI for users to assess the similarity between cases in a case
base, using various visualization techniques. Changing similarity measures trig-
gers recalculations of similarity values. Bach and Mork [3] propose a similarity
visualization method in CBR to aid in visualizing similarity measures during the
retrieval phase.

Marin-Veites et al. [13] propose a visual explanation of the similarity scores
for the query cases by comparing the global and local similarity measures of the
attributes for end users in a medical domain. They use bar charts to compare
the case similarity between the top 5 ranks of most similar cases and a query
case. The visualization shows not only the global similarity, but also the local
similarity scores that intervene in the similarity measure.

The works in [16,17,23] propose visualization methods based on the use of
graphs and spring force models for visual exploration of case bases and the simi-
larity measures applied to them. The distance between cases in a two-dimensional
space represents their similarity, so similar cases will be drawn close together,
and dissimilar cases should be drawn far apart. This visualization is useful to
identify regions of similar cases and gaps without representative cases or outliers,
but it only works for small case bases.

The work in [9] describes another alternative to provide visual explanations
of the similarity scores between a query and the retrieved cases. These visualiza-
tions are based on scatter plots and rainbow boxes and are aimed at end users,
i.e., medical experts of the CBR system. The complexity of the visualization used
led the authors to simplify and reduce the dimensions and information displayed
by the tool, which required a short training before using it.

In [14], the authors use visualization techniques to increase the explainability
of the results of a CBR system. For this purpose, coordinate diagrams are used
that represent the similarities between the cases.

2.3 Summary and Research Gaps

Schultheis et al. [20] note that while most CBR frameworks offer GUIs for visual-
ization and configuration, they rarely support the interactive design of similarity
measures. Although visualization techniques exist, they mainly focus on explain-
ing similarities rather than guiding the design process. Moreover, these tools are
often standalone, limiting integration with modern CBR frameworks. This lack
of interactive design capabilities hinders broader applicability, both within and



6 G. Jimenez-Diaz et al.

Similarity
Configuration

Evaluation
Feedback

Similarity
Visualization

Similarity
Visualization

Similarity
Configuration

Similarity Scores
and Metadata

Design Cycle

Development Cycle

Retrieve Visualize

EvaluateDesign

Prototype

Fig. 1. Iterative CBR design process with integrated visualization.

outside the CBR research community. To address these limitations, we propose
a tightly integrated architecture that combines visualization techniques directly
within CBR frameworks, enabling interactive similarity measure design tailored
to various applications.

3 Iterative Design Framework

The goal of this section is to propose an implementation-agnostic description of
the proposed iterative process for designing CBR applications that can be used
as a template for other work in this area. A reference implementation of this
framework is provided in Section 4. Figure 1 shows an overview of the proposed
iterative design process. Compared to the standard process described in Sec-
tion 2, our approach focuses on the integration of CBR development frameworks
and visualization tools to enable rapid prototyping. As a result, practitioners are
no longer required to model rather complex similarity measures by hand, but
can rely on visual guidance and feedback through the process. In order to enable
these interactions, the framework needs to meet certain constraints—expressed
as requirements in the context of our envisioned integration—that will be dis-
cussed as part of this framework description. These requirements have been de-
rived based on current CBR frameworks supporting visualizations and additional
standalone tools helping CBR developers during modeling similarity measures
(see Sect. 2). In addition, the requirements reflect both our expertise as CBR
researchers and our experience developing CBR applications, thereby represent-
ing the user group of CBR developers. In addition to mandatory requirements
(MR), we propose a set of optional requirements (OR) that can further enhance
the user experience, but may be omitted for certain use cases. We divide the
proposed framework into three sections: (i) Designing a similarity configuration,
(ii) visualization-aware prototyping as part of the development cycle, and (iii)
end-to-end evaluation.



Framework for Supporting the Iterative Design of CBR Applications 7

We want to emphasize that similarity is useful in different CBR tasks, not just
in retrieval. It plays a crucial role in adaptation, reuse, and learning by ensuring
that relevant cases are identified, appropriately modified, and integrated into the
system effectively. As such, finding optimal similarity measures for a domain is
a central task in the overall CBR design process.

3.1 Designing a Similarity Configuration

When starting from scratch, CBR developers face a cold start problem as they
cannot rely on existing similarity visualizations or expert feedback. Consequently,
they must establish a set of initial similarity measures for the specific case rep-
resentation based on the data types involved and their prior experience. This
bootstrapping issue is beyond the scope of our work, but could be tackled with
the help of Large Language Models (LLMs)—for instance, by automatically se-
lecting and parameterizing similarity measures of established CBR frameworks
as proposed by Lenz et al. [10]. Having obtained an initial configuration, the
CBR developer can draw on two crucial sources of knowledge during this phase:
the evaluation of the similarity score and the feedback from the domain expert.
Using these resources, they can refine the similarity configuration and initiate
the next iteration of the design process.

MR1 (Similarity Configuration). The framework must provide a description of
the similarity configuration used by the CBR system prototype. This includes
the functions used to determine local similarities and the aggregation method to
calculate the global similarity score.

3.2 Visualization-Aware Prototyping

After an initial similarity configuration is established, the CBR developers can
evaluate the retrieval performance using a CBR system prototype. Typically,
this involves defining a query, executing it against the available case base, and
examining the retrieved cases along with their corresponding numeric similarity
values. This process can be tedious and time-consuming, with only little or no
insight into the underlying computations. Instead, providing visual feedback on
the similarity scores and the impact of individual similarity measures can sig-
nificantly enhance the expert’s understanding of the system’s behavior. In this
context, relying solely on the global aggregated similarity score is insufficient,
and further data is needed to generate appropriate visual representations.

MR2 (Case Representation). The framework must define a machine-readable
representation of the case base and the queries. This makes it possible to analyze
the data types and select appropriate visualizations.

MR3 (Similarity Scores). The framework must generate data on the local sim-
ilarity scores for each attribute of the retrieved cases in addition to the overall
global score. This data will be used to generate visual representations to explore
and analyze the similarity functions described in the previous stage.



8 G. Jimenez-Diaz et al.

OR1 (CBR Introspection). The framework should provide information on all
the CBR processes required to achieve the final solution. This enables fine-
grained analysis of complex patterns, such as retrieval with MAC/FAC [7].

OR2 (Arbitrary Case Representation). The framework should support not only
simple attribute-value case representations, but also more arbitrary representa-
tions such as object-oriented structures, hierarchical data, graph-based struc-
tures, or even images.

OR3 (Interactivity). The framework should allow interactive configuration of
the similarity measures. Instead of using hard-coded or built-in metrics, the user
should be able to tweak the parameters and observe the impact on the computed
scores in real time.

3.3 End-to-end Evaluation

The final step in the iterative design process is the evaluation of the system with
domain experts. Having completed the prototyping phase, the CBR developer
already has a working implementation at hand together with a corresponding
similarity visualization. Contacting domain experts is resource intensive and
time-consuming, so the CBR developer may decide to perform multiple rounds
of prototyping first. However, actual feedback from people working in the field is
invaluable and can help to identify issues that may not be apparent to the CBR
developer. The generated visualization can be helpful for this task as it helps
the CBR developer to explain the system’s behavior to the domain expert, and,
thus, provides an introspective view of the system’s behavior. Afterward, the
CBR developer can incorporate the suggestions into the similarity configuration
as part of the next iteration of the design cycle.

MR4 (Interactive Visualization). The evaluation process must be supported
with interactive features. Interactive visualization should be preferred to support
the evaluation stage because it will ease the engagement of the different users
involved in the evaluation process.

OR4 (Automated Evaluation). The framework should provide automated eval-
uation methods to assess the appropriateness of the computed similarities. This
can, for instance, be achieved by comparing a retrieval result with a set of known
relevant cases crafted by human experts. This allows a proper assessment of a
good number of cases and helps in maintaining the case base.

4 Proof-of-Concept Implementation
Based on the proposed framework for supporting the iterative CBR design pro-
cess, in this section, we present a proof-of-concept that instantiates the theoret-
ical framework and works as an example of how to implement and use it in a
real use case. For this purpose, we propose the integration of CBRkit [11], an
easily applicable CBR framework for the prototyping stage, and SimViz [8], a
visualization tool for the visual evaluation stage. In the following, we discuss



Framework for Supporting the Iterative Design of CBR Applications 9

the concrete integration between these two tools and their data flow to imple-
ment the proposed. In addition, we conduct a case study for evaluation and to
demonstrate the suitability of their integration. For this purpose, we use the cars
domain, and discuss step by step the iterative CBR design process using both
tools.

4.1 CBRkit

CBRkit [11] is a Python-based framework for building CBR applications4. It is
designed to be modular and flexible and uses a declarative approach to build
custom pipelines for the different stages of the CBR cycle. The library comes
with a set of built-in components such as similarity measures—making it easy
to get started—but also allows for the creation of completely custom functions
for more advanced use cases. Built-in functions are available for basic data types
like strings or numbers, but also more complex ones like attribute-value data or
graphs. CBRkit does not introduce a new abstraction layer through some simi-
larity configuration format, instead it uses native Python code for declaratively
defining the desired similarity measures. In addition to running CBR pipelines
using these, it is also possible to expose them via a REST API, which allows for
easy integration with other systems like SimViz.

The first version of CBRkit published in 2024 already met some of the re-
quirements outlined in Section 3: It is possible to define CBR pipelines consisting
of multiple retrieval and reuse stages—making it possible to apply MAC/FAC—
which are then transparently exposed in the result object (OR1). Its way of
defining similarity measures is flexible enough to allow for arbitrary case repre-
sentations (OR2). In addition, the resulting similarity scores can be structured
and contain additional metadata—for instance, local similarity scores for each
attribute of the retrieved cases (MR3).

However, two mandatory and two optional requirements were still unmet.
First, while easy to configure, the similarity measure definitions were not ex-
posed in a machine-readable format in the result object (MR1). These measures
are defined in plain Python code, making the extraction of the required infor-
mation complex and not feasible without changes to the core of the library. This
lack of abstraction also means that the similarity configuration cannot be dy-
namically changed (OR3). In addition, while CBRkit can handle arbitrary case
representations, these are not passed to downstream components due to miss-
ing serialization techniques. Furthermore, automated evaluation is not possible
due to the absence of interfaces for standardized evaluation metrics such as pre-
cision/recall or completeness/correctness (OR4). Lastly, the mentioned REST
interface was a byproduct of the library, not a primary feature, leading to an
overly verbose and difficult-to-consume API specification.

4 Source code: https://github.com/wi2trier/cbrkit (MIT license).

https://github.com/wi2trier/cbrkit


10 G. Jimenez-Diaz et al.

4.2 SimViz

SimViz5 (Similarity VisualiZation) is a tool that focuses on the interactive
visualization of similarity measures and its application to different case bases [8].
SimViz can visualize structured cases based on attribute-value representations. It
uses case base metadata with information about attribute data types to choose
the appropriate visualization (MR2). In addition to basic datatypes (strings,
numbers, and symbols), it provides specific visualizations for visual attributes
(like colors and images) and symbols arranged in a taxonomy.

SimViz supports global-local similarity measures based on weighted similar-
ity. It uses similarity configuration metadata about global and local similarity
measures to display visual explanations about the case attributes, and the sim-
ilarity measures employed (MR1). It also provides heatmaps and histograms to
explore the distribution of similarity scores over a case base (MR3). More specif-
ically, the global similarity score between two cases can be visually analyzed,
showing how it is deconstructed into local similarity values and which functions
are employed to compute them.

Since its early design, SimViz supports the interactive exploration of the case
base and the similarity scores (MR4). First, users can click on the heatmap to
select a particular pair of cases, or users can randomly select a pair of cases by
clicking on a particular histogram bar or on a taxonomic concept. Moreover, users
can explore the similarity distribution of an individual case against the other
cases in the case base using an interactive stripe chart. Finally, SimViz partially
supports the interactive configuration of the similarity measures (OR3). Users
can modify the predefined weights of the local similarity measures and compare
the effect of these changes on the global similarity value, recalculating it without
the need of any additional prototyping tool.

Although SimViz meets all mandatory requirements, some optional ones are
still missing. Designed primarily for similarity visualization, SimViz does not
support introspection of other stages in the CBR process (OR1). Furthermore,
requirement OR2 is only partially fulfilled. Although it includes visualization for
taxonomies, images, and colors, SimViz cannot handle arbitrary case represen-
tations. We are working on supporting hierarchical data, with future plans to
include its representation. Finally, automated evaluation is not supported as its
interface does not visualize any standardized evaluation metrics (OR4).

4.3 Integration of CBRkit and SimViz

In this section, we detail the integration process of CBRkit and SimViz. CBRkit
is used to design similarity measures and prototype the retrieval cycle to gener-
ate similarity scores, while SimViz utilizes these data, along with the case base
and its case representation, to visualize and evaluate the similarity values and
the similarity measures employed. Figure 2 illustrates the use of both tools to
implement the proposed theoretical framework.
5 Source code: https://github.com/gjimenezUCM/simviz (Apache 2.0 License).

Deployed version: https://gjimenezucm.github.io/simviz/.

https://github.com/gjimenezUCM/simviz
https://gjimenezucm.github.io/simviz/


Framework for Supporting the Iterative Design of CBR Applications 11

Developer

SimVizCBRkit

Similarity
Configuration

Retrieval
Request

Similarity Scores
and Metadata

Visualization
Request

Similarity
Visualization

Case Base

Fig. 2. Architecture of the integration between CBRkit and SimViz.

A significant part of the integration involves defining and adapting the data
formats used by both systems. First, we need a machine-readable case represen-
tation (MR2) that can be read by both systems. To pass the retrieved cases and
the underlying query to SimViz, a set of dumpers has been implemented, such
as those to convert the data into the widely used JSON format. We intention-
ally omitted additional metadata, such as descriptions of the data types, as this
information can be easily inferred from the available data. For use with SimViz,
the exported results have been manually merged with the SimViz data used to
load the case base—combining metadata about the case representation and the
retrieved cases.

The second change in CBRkit is the introduction of a mechanism to gather
information about the similarity configuration provided (MR1). Our goal was to
transmit everything given by the user in a machine-readable format to down-
stream applications such as SimViz. To achieve that, all built-in similarity mea-
sures have been refactored to use a class-based interface that exposes the param-
eters of the measure set by the user via class attributes. By leveraging Python’s
magic methods, instances of these classes can still be called as if they were func-
tions, allowing for a seamless transition from the original implementation. Be-
sides the parameters, we automatically determine the name of the function and
collect the docstring of the class as a description of the measure. This approach
has been implemented in a generic way that works not only for the built-in met-
rics, but also for custom similarity functions defined by the user. Using these new
capabilities, we can generate files containing the similarity configuration (MR1)
and similarity scores (MR3) to be ingested by SimViz for visual evaluation. As
SimViz expects the data in a specific format, we implemented an adapter to con-
vert between the formats—making it possible for SimViz to directly work with
the CBRkit results.

Next, we added an evaluation module (OR4) to CBRkit that is based on
the ranx library [4]. In an effort to simplify integration with other systems,
we also completely overhauled the REST API, which now offers a fully typed
OpenAPI specification that can be used to generate client libraries for different
programming languages. Currently, the evaluation module is not yet integrated



12 G. Jimenez-Diaz et al.

Fig. 3. Visualization of Case Representation With Attribute Weighting (Full image
available at https://tinyurl.com/musaj774)

into the REST API, but we see this as a first step towards a more automated
evaluation of the CBR system.

The last missing piece is an interactive way to define similarity measures in
CBRkit (OR3). One way to tackle this aspect would be to define a serialization
format manually configuring CBRkit—leading to a high maintenance burden. A
more elegant way is to automatically generate a schema from the set of avail-
able Python functions based on the available type annotations. Doing this in a
generic way is not trivial, since CBRkit supports not only attribute-value rep-
resentations, but also graphs or fully custom, domain-specific representations.
We therefore decided to leave this requirement for future work and focus on the
integration with SimViz first.

4.4 Case Study in the Cars Domain

To demonstrate the suitability of the proposed integration between a CBR frame-
work and a visualization tool, we present a case study on the integration of
CBRkit and SimViz. For this, we use the cars domain, which includes a dataset
of 1,000 cars6 The cars domain represents an exemplary case study for simi-
larity modeling, embodying challenges common across real-world applications.
This dataset requires sophisticated similarity measures that can appropriately
handle different data types while capturing their relative importance in deter-
mining the overall similarity. Its 11 attributes and their metadata are crucial for
the integration between CBRkit and SimViz. Below, we demonstrate how this
integration can support the iterative design process in the cars domain.

We started the design process by analyzing the dataset and exploring the
catalog of similarity measures provided by CBRkit. After that, we use CBRkit to
implement a first version of a similarity measure that combines local similarities
using a weighted mean. This measure combines diverse functions such as a linear
similarity for the year attribute, Levenshtein for the manufacturer attribute,

6 The used cars dataset is available at https://doi.org/10.5281/zenodo.15006920.

https://tinyurl.com/musaj774
https://doi.org/10.5281/zenodo.15006920


Framework for Supporting the Iterative Design of CBR Applications 13

Fig. 4. Explanation of Local Similarities by Visualization (Full image available at
https://tinyurl.com/mr3y4n2e).

and a custom function for linear similarity in a set of values for the condition
attribute. The similarity configuration and similarity scores data created using
CBRkit are used in SimViz to visualize the designed similarity measures.

Fig. 3 illustrates the dataset used, the case representation, including attribute
weighting, and the similarity measures applied. The top section shows the used
dataset (left) and the similarity configuration (right). The bottom section is for
the interactive visualization of similarity scores data, showing the distribution
of the similarity values in the case base (left), and a case comparison between
two selected cases (right). In this context, it is visualized with which importance
each attribute contributes to the final similarity value. Furthermore, it is also
possible to focus on local similarity values and their corresponding similarity
measures.

The iterative process continues using the Similarity configuration panel pro-
vided by SimViz, where we can modify the predefined weights of the local simi-
larity measures. This feature supports a fine-tuning of the similarities in the case
base, visualizing the effect of these changes on the global similarity value.

The iterative process can return to the design stage in order to experiment
with more complex similarity measures, using a taxonomy for the manufacturer
attribute. In this case, we return to CBRkit to use the similarity measures that
this framework implements for taxonomies to create new similarity configura-
tions and data scores and visualize these new similarity functions. Back to SimViz
to analyze them, Figure 4 shows how SimViz supports the visualization of the
taxonomy used for similarity calculation. To better understand the assessment
of similarity between the two attribute values, i.e., Chevrolet and Saturn, the
corresponding nodes in the taxonomy are highlighted. This helps both the CBR
developer and the domain expert determine how the similarity originates.

https://tinyurl.com/mr3y4n2e


14 G. Jimenez-Diaz et al.

5 Lessons Learned, Limitations, and Future Work

Developing effective similarity measures remains a challenge in CBR system
design and implementation. Although existing CBR frameworks provide struc-
tured methodologies, they often lack the flexibility to integrate with visualization
techniques and tools. CBRkit addresses this gap, standing out for their focus on
usability and integration. In this paper, we show how the integration of CBRkit
with a visualization tool such as SimViz makes it an ideal choice for researchers
and practitioners. We demonstrate how CBRkit’s streamlined design simplifies
CBR solution implementation while maintaining adaptability for various ap-
plications. Our approach improves the interpretability of similarity measures,
facilitating their iterative refinement, and ultimately making CBR systems more
accessible to a broader audience. By visualizing the behavior of similarity mea-
sures, developers can gain more profound insight into their impact on case re-
trieval and system performance, leading to more effective design choices. Based
on our experience during the integration of both tools, we identified several paths
for future work:

Data-driven process. Currently, similarity measures must be manually de-
fined in CBRkit based on a configuration. A more integrated approach would
involve a common interchange format for CBRkit and SimViz, enabling au-
tomatic generation of similarity measures.

Orchestration. In its current state, both tools are loosely coupled: CBRkit
generates files that are consumed by SimViz. A deeper integration could
involve an orchestrated workflow in which SimViz initiates the similarity
computation using CBRkit through an integrated user interface to configure
the similarity configuration.

Data format standardization. To bridge the different case representation
formats, we created an adapter. A better solution would be to standardize
the data formats to meet both applications’ requirements.

Limitations in data size. Large data files can result in high latency when
running as a service. For example, the Cars 1k dataset generates similarity
score files of around 200 MB. The API should support selectively querying
only the relevant data to mitigate this issue.

Evaluation metrics. While CBRkit includes an initial implementation of an
evaluation module, it is not yet part of the integration. To fulfill OR4, it
should allow loading a gold standard corpus and comparing the similarity
scores with the expected results.

In future work, we will extend this integration by adding more visualization
techniques and evaluating their effectiveness through empirical studies. In ad-
dition, we want to examine how large language models (LLMs) can be used to
support similarity modeling by suitable explanations [2]. We also plan to expand
visualization to other key CBR processes, particularly reuse and case base main-
tenance. Additionally, by providing an OpenAPI specification, we enable easy
re-implementation by other libraries, fostering future integration of SimViz with
other CBR frameworks and promoting a more collaborative, interoperable CBR
ecosystem.



Framework for Supporting the Iterative Design of CBR Applications 15

Acknowledgments. Supported by the UCM (Research Group 921330) and the AUDI-
TIA-X project PID2023-150566OB-I00, funded by the Ministry of Science and Inno-
vation of Spain (https://gaia.fdi.ucm.es/research/auditia-x/), the association
Eifelkreis Digital with its project KITEi, and the Studienstiftung.

References

1. Azzam, T., et al.: Data Visualization and Evaluation. New Directions for Evalua-
tion 2013(139), 7–32 (2013)

2. Bach, K., et al.: Case-Based Reasoning Meets Large Language Models: A Re-
search Manifesto For Open Challenges and Research Directions. HAL Science
hal-05006761v1 (2025), https://hal.science/hal-05006761, working paper or
preprint

3. Bach, K., Mork, P.J.: On the Explanation of Similarity for Developing and De-
ploying CBR Systems. In: 33rd FLAIRS. pp. 413–416. AAAI Press (2020)

4. Bassani, E.: Ranx: A Blazing-Fast Python Library for Ranking Evaluation
and Comparison. In: Adv. in Inf. Ret. pp. 259–264. Springer (2022)

5. Boehm, B.W.: A spiral model of software development and enhancement. Com-
puter 21(5), 61–72 (May 1988)

6. Buxton, W., Sniderman, R.: Iteration in the Design of the Human-Computer In-
terface. In: 13th HFAC. pp. 72–81 (1980)

7. Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: A model of similarity-based re-
trieval. Cogn. Sci. 19(2), 141–205 (1995)

8. Jiménez-Díaz, G., Díaz-Agudo, B.: Visualization of Similarity Models for CBR
Comprehension and Maintenance. In: 32nd ICCBR. vol. 14775, pp. 67–80 (2024)

9. Lamy, J., Sekar, B.D., Guézennec, G., Bouaud, J., Séroussi, B.: Explainable arti-
ficial intelligence for breast cancer: A visual case-based reasoning approach. Artif.
Intell. Medicine 94, 42–53 (2019)

10. Lenz, M., Hoffmann, M., Bergmann, R.: LLsiM: Large Language Models for Sim-
ilarity Assessment in Case-Based Reasoning. In: 33rd ICCBR in Biarritz, France.
Springer (2025), Accepted for Publication.

11. Lenz, M., Malburg, L., Bergmann, R.: CBRkit: An Intuitive Case-Based Reasoning
Toolkit for Python. In: 32nd ICCBR. vol. 14775, pp. 289–304. Springer (2024)

12. Malburg, L., Hoffmann, M., Trumm, S., Bergmann, R.: Improving Similarity-Based
Retrieval Efficiency by Using Graphic Processing Units in Case-Based Reasoning.
In: 34th FLAIRS (2021)

13. Marín-Veites, P., Bach, K.: Explaining CBR Systems Through Retrieval and Sim-
ilarity Measure Visualizations: A Case Study. In: 30th ICCBR. LNCS, vol. 13405,
pp. 111–124. Springer (2022)

14. Massie, S., Craw, S., Wiratunga, N.: Visualisation of Case-Base Reasoning for
Explanation. In: ECCBR 2004 Workshops. pp. 135–144 (2004)

15. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning Similarity Measures
from Data. Prog. Artif. Intell. 9(2), 129–143 (2020)

16. McArdle, G., Wilson, D.C.: Visualising Case-Base Usage. In: 5th ICCBR Work-
shops. pp. 105–114. Springer (2003)

17. Namee, B.M., Delany, S.J.: CBTV: Visualising Case Bases for Similarity Measure
Design and Selection. In: 18th ICCBR, vol. 6176, pp. 213–227. Springer (2010)

18. Ontañón, S.: An overview of distance and similarity functions for structured data.
Artif. Intell. Rev. 53(7), 5309–5351 (2020)

https://gaia.fdi.ucm.es/research/auditia-x/
https://hal.science/hal-05006761


16 G. Jimenez-Diaz et al.

19. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
The Agile Software Development Series, Addison-Wesley (2010)

20. Schultheis, A., et al: An Overview and Comparison of Case-Based Reasoning
Frameworks. In: 31st ICCBR. LNCS, vol. 14141, pp. 327–343. Springer (2023)

21. Schultheis, A., et al.: Explanation of Similarities in Process-Oriented Case-Based
Reasoning by Visualization. In: 31st ICCBR. vol. 14141, pp. 53–68. Springer (2023)

22. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
23. Smyth, B., Mullins, M., McKenna, E.: Picture perfect - Visualisation Techniques

for Case-Based Reasoning. In: 14th ECAI. pp. 65–69. ECAI’00, IOS Press (2000)
24. Verma, D., Bach, K., Mork, P.J.: Similarity Measure Development for Case-Based

Reasoning-A Data-Driven Approach. In: 3rd NAIS Symposium. CCIS, vol. 1056,
pp. 143–148. Springer (2019)

25. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization. CRC Press
(2015)


	A Framework for Supporting the Iterative Design of CBR Applications

