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Abstract. Argumentation is an important sub-field of Artificial Intel-
ligence, which involves computational methods for reasoning and deci-
sion making based on argumentative structures. This paper contributes
to case-based reasoning with argument graphs in the standardized Ar-
gument Interchange Format by improving the similarity-based retrieval
phase. We explore a large range of novel approaches for semantic textual
similarity measures (both supervised and unsupervised) and use them in
the context of a graph-based similarity measure for argument graphs. In
addition, the use of an ontology-based semantic similarity measure for
argumentation schemes is investigated. With a range of experiments we
demonstrate the strengths and weaknesses of the various methods and
show that our methods can improve over our previous work. Our code is
publicly available on GitHub1.

Keywords: Argument Graph Similarity · Semantic Textual Similarity
· Argument Retrieval

1 Introduction

Argumentation is an increasingly important sub-field of Artificial Intelligence
(AI). It involves various computational methods for reasoning and decision mak-
ing, which are not only based on individual facts, but on coherent argumenta-
tive structures. The German special research program Robust Argumentation
Machines (RATIO)2 aims at developing new methods for extracting arguments
from documents as well as new semantic models and ontologies for the deep
representation of arguments which allows argument-based reasoning for various
kinds of real-world problem solving. The major challenge is the development of
so-called argumentation machines [27], which are specialized in reasoning with
arguments. An argumentation machine could find supporting and opposing argu-
ments for a user’s topic or it could synthesize new arguments for an upcoming,

1 https://github.com/MirkoLenz/ReCAP-Argument-Graph-Retrieval
2 http://www.spp-ratio.de/home/
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not yet well explored topic. Thereby it could support researchers, journalists,
and medical practitioners in various tasks, overcoming the very limited support
provided by traditional search engines used today.

In the ReCAP project [6], which is part of the RATIO program, we aim
at combining methods from case-based reasoning (CBR), information retrieval
(IR), and computational argumentation (CA) to contribute to the foundations
of argumentation machines. In previous work [5], we developed an initial ver-
sion of a similarity measure for arguments represented as argument graphs [7]
for the purpose of case-based argument retrieval. This similarity measure was
inspired by our own previous work on process-oriented CBR (POCBR), in which
the similarity of graphs is assessed that represent semantically annotated work-
flows [4]. Argument graphs, however, are largely based on textual representations
of claims and premises and thus require the use of textual similarity measures,
thereby pushing this work closer to the sub-field of textual CBR [35]. While
in our previous work, we only apply a standard word embedding technique for
the assessment of local textual similarities, the aim of this paper is to explore a
larger range of new approaches for semantic textual similarity measures (both
supervised and unsupervised) used in the context of a graph-based similarity
measure for argument graphs. In addition the use of an ontology-based semantic
similarity measure for argumentation schemes is investigated.

Next, we present the foundations and related work in the field. Section 3
introduces our general approach for argument graph similarity as well as the
spectrum of semantic textual similarity measures and the argumentation scheme
similarity, which are the major contributions of this paper. The various methods
and selected combinations of them are systematically evaluated in Section 4.
Finally, Section 5 concludes the paper.

2 Foundations and Related Work

In the field of CA, an argument consists of a set of premises and a claim together
with a rule of inference which concludes the claim from the premises. A premise
can support or oppose a claim as well as an inference step. Together premises,
claims, and inference steps form an argument graph. The Argument Interchange
Format (AIF) standardizes such a graph representation for arguments [15] to be
used in CA. In Fig. 1 an example of an argument graph in AIF format is given.
Claims and premises are represented as information nodes (I-nodes), depicted as
rectangular boxes which are related to each other via scheme nodes (S-nodes),
depicted as rhombuses. In the example there are two arguments for a claim
related to health insurance. The opposing argument has a single premise, whereas
the supporting argument has two distinct premises. Argumentation schemes,
corresponding to archetypical forms of arguments, are annotated as types of
an argument. Here, the supporting argument has a type of Position to Know.
The opposing argument has the type Default Conflict. There are many different
argumentation schemes which cover diverse facets of argumentation [34], such
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and who would want to question

their broad expertise?

PositionToKnow

Not all practices and

approaches may have been

proven in clinical trials

Default Conflict

Many general practitioners

offer such counselling and

treatments in parallel anyway

Health insurance companies

should naturally cover

alternative medical treatments

Fig. 1. Example of an argument graph in AIF format from the Microtexts corpus [25]

as Argument from Positive Consequence, Argument from Expert Opinion, or
Argument from Cause to Effect.

While argument mining methods [22] aim at converting natural language
argumentative texts into such argument graphs, our work aims at supporting the
reasoning with such graphs. Several formal argumentation frameworks currently
exist which are based on formal logic, but we believe that they are of limited use
for future argumentation machines that reason with real-world arguments [12].
Thus, we propose CBR as it does not require a complete and consistent domain
theory and is able to make use of vague information. Thereby, we continue the
traditional path for the use of textual CBR [35] in the context of argumentation
for legal reasoning [3,11] and aim at linking it with ideas from POCBR and novel
semantic text similarity approaches.

Existing work on CBR for legal argumentation is based on a model of legal
argument. Cases are represented based on hierarchically structured factors or is-
sues [29], which are used during similarity-based retrieval. A factor is similar to
an argument or premise. The similarity of two arguments is defined by the com-
monalities and differences of the factors. CATO extends those argument graphs
with intermediate factors, forming a factor hierarchy [1]. Branting [11] proposes
case-based adaptation in legal reasoning by reusing and adapting justifications
to create new arguments. Interestingly, similar ideas have been recently estab-
lished in the field of CA such as the “recycling” of arguments for synthesis of
claims [8].

3 Argument Graph Retrieval using Semantic Textual
Similarities

We now describe our approach to the representation of cases in the form of
semantically labeled argument graphs, we recapitulate the basic approach for
similarity assessment [5], and introduce the main enhancements by semantic
textual similarity measures and the argumentation scheme ontology.
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3.1 Argument Graph Representation

We developed a case representation using argument graphs, which is based on the
graph representation of AIF. It is similar to text reasoning graphs [31] for rep-
resenting causal information, but argument graphs contain in addition semantic
information in different forms. Formally, an argument graph is a semantically
labeled directed graph and represented as a tuple A = (N,E, τ, λ, t) [4]. N is the
set of nodes and E ⊆ N ×N is the set of directed edges connecting two nodes.
τ : N → T assigns each node a type and λ : N → L assigns each node a semantic
description from a language L. t ∈ L describes the overall topic of the argument
represented in the graph. The types T follow the AIF standard [15] so that a
node can either be an I-node with natural language propositional content or
an S-node characterized by the respective argumentation scheme. The mapping
function λ is used to link a semantic representation to a node. For an I-node
n, λ(n) is the original textual representation (possibly after the application of
traditional pre-processing such as stopword removal) together with a semantic
representation of this text in the form of a vector, produced by a sentence en-
coder (see Sec. 3.3). For an S-node n, λ(n) corresponds to an argumentation
scheme identifier, from an ontology of argumentation schemes constructed fol-
lowing the classification as proposed by Walton [33]. The argumentation scheme
ontology is further used to define a local similarity measure for comparing two
S-nodes, as described in Sec. 3.4. Finally, the overall topic t of an argument
graph corresponds to the concatenated textual contents of all I-nodes as well as
their semantic vector representation.

For retrieval, a case base of argument graphs is assumed, which could result
from argument mining or from the manual transformation of text corpora. In
our work, we also consider a query to be an argument graph or a fraction of it.
In particular, a query can also consist only of a single I-node.

3.2 Argument Graph Similarity and Retrieval

The general principle of argument graph similarity and retrieval introduced by
Bergmann et al. [5] has been adopted from POCBR [4] and follows the local-
global principle [28]. The global similarity is computed from local node and
edge similarities. The local node similarity simN (nq, nc) of a node nq from the
query argument graph QA and a node nc from the case argument graph CA is
computed as follows:

simN (nq, nc) =


simI(nq, nc), if τ(nq) = τ(nc) = I-node

simS(nq, nc), if τ(nq) = τ(nc) = S-node

0, otherwise

(1)

Approaches for concrete I-node and S-node similarity functions simI and simS

are the main contribution of this paper and introduced in the next subsections.
The similarity of two edges simE(eq, ec) is the average of the similarities of their
endpoints l and r respectively:

simE(eq, ec) = 0.5 · (simN (eq.l, ec.l) + simN (eq.r, ec.r)) (2)
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To construct a global similarity value, an admissible mapping m is applied which
maps nodes and edges from QA to CA, such that only nodes of the same type
(I-nodes to I-nodes and S-nodes to S-nodes) are mapped. Edges can only be
mapped if the nodes they link are mapped as well by m. For a given mapping
m let sni be the node similarities simN (ni,m(ni)) and sei the edge similarities
simE(ei,m(ei)). The similarity for a query graph QA and a case graph CA given
a mapping m is the normalized sum of the node and edge similarities.

simm(QA,CA) =
sn1 + · · ·+ snn + se1 + · · ·+ sem

nN + nE
(3)

Finally, the similarity of QA and CA is the similarity of an optimal mapping m,
which can be computed using an A∗ search [4].

sim(QA,CA) = max
m
{simm(QA,CA) | m is admissible} (4)

For similarity-based retrieval of argument graphs from a case base a linear re-
trieval approach should be avoided due to unacceptable retrieval times caused
by the complexity of A∗ search as well as the complexity of the involved node
similarity measures. Thus, we propose a MAC/FAC (many are called, but few
are chosen) approach [17], which divides the retrieval into an efficient pre-filter
stage (MAC phase) and the subsequent FAC phase, in which only the a few
filtered cases are assessed using the complex similarity measure. We proposed
a MAC/FAC approach for argument graphs in which the MAC phase is im-
plemented as a linear similarity-based retrieval of the cases based only on the
semantic similarity of the topic vector t [5]. The filter selects the k most similar
cases, which are passed over to the FAC phase which implements the ranking
by a linear assessment of the cases using the graph-based similarity as described
above.

3.3 Semantic Textual Similarity Measures for I-Node Similarity

The quality of the overall similarity assessment heavily depends on the applied
node similarity measures. In our previous work we only employed Word2vec
Skip-gram [23] embeddings aggregated with an arithmetic mean and compared
with a cosine similarity. In this paper we investigate a larger, more diverse set
of novel methods for semantic textual similarity based on neural networks. The
approaches include unsupervised word and sentence embeddings and their com-
bination as well as supervised sentence embeddings which are trained on a large
amount of training data. There are also other methods available like SIF [2] or
Skip-Thought vectors [19] which however will not be evaluated here.

Unsupervised Word Embeddings Word embeddings are distributed repre-
sentations of words, which means each word is associated with a word vector.
Word vectors capture the semantics of a word, in the sense that similar words
have similar word vectors. Word embedding models are trained on textual data
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in an unsupervised manner. The models rely on the distributional hypothesis,
namely that words in similar contexts share meaning.

Word2vec Skip-gram (WV) [23] trains word vectors based on the prediction
of context words. The model architecture employs a softmax classificator and
maximizes the log likelihood of the word vectors based on (word, context) pairs.
Words appearing in similar contexts have therefore similar word vectors. For per-
formance reasons the softmax is replaced by either a hierarchical softmax or an
alternative negative sampling objective [24]. The fastText (FT) embedding [9] is
based on the Skip-gram model. In addition it uses subword information as each
word is represented as the sum of its character n-grams together with the word.
A vector for n-grams is learned which allows to build word representations for
previously unseen words. GloVe (GL) [26] learns word vectors from global cor-
pus statistics directly, in contrast to Skip-gram’s context window approach. An
objective function based on ratios of co-occurrence probabilities is maximized.

In order to assess the similarity of I-nodes, the individual embeddings of
the words in the node’s text have to be aggregated to an overall node embed-
ding, based on which the similarity can be assessed, e.g. by a cosine measure.
Traditional unsupervised aggregation methods for this task include arithmetic
mean (xa), median (xm), geometric mean (xg), min pooling (minx), max pooling
(maxx) and p-means (xp) [30].

Unsupervised Sentence Embeddings Sentence embedding methods are an
alternative approach that can be applied to assess the similarity of the I-nodes
based on their text. As they work on sentences rather than on words, no aggrega-
tion is needed. The Distributed Memory Model of Paragraph Vectors (DV) [21]
is such a method trained similarly to word2vec’s CBOW model [23], but with an
additional vector representing the sentence as a whole. Embeddings for previ-
ously unseen sentences are inferred by backpropagation on the paragraph vector
keeping all other parameters fixed.

Supervised Sentence Embeddings While the previous embedding approaches
are purely unsupervised, several approaches exist which aim at improving the
similarity assessment including to a certain degree also supervised learning,
thereby accepting the additional effort caused by labeled training data. In-
ferSent [16] is one such approach trained on the Stanford Natural Language
Inference corpus [10]. During training a shared BiLSTM encodes two sentences
and the encoded sentence pair is further enhanced with additional features, such
as the absolute difference of both sentences and their element-wise product, be-
fore it is passed through a feed-forward network for classification. After training
the BiLSTM yields a 4096 dimensional vector for a sentence. Universal Sentence
Encoder [13] trains a sentence encoder on multiple unsupervised and supervised
tasks. The transformer-based variant (USE-T) uses a transformer encoder [32].
Deep Average Network-based Universal Sentence Encoder (USE-D) uses a Deep
Average Network encoder [18] instead, which averages unigram- and bigram-
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embeddings and passes the averaged value through a feed-forward network. The
output of both networks is a 512 dimensional vector, representing a sentence.

Combining Different Embeddings The various embeddings just described
can also be combined, following the idea that each embedding type captures dif-
ferent kinds of information [30]. The concatenation of two embeddings A and B is
denotated by A⊕ B, resulting in an embedding with dimension dim(A) + dim(B).
For example WV⊕ FT is the concatenation of WV and FT embeddings.

Similarity Measures for I-Nodes In order to assess the similarity of I-nodes,
a similarity measure is required which compares the computed embedding vec-
tors of the nodes. Traditionally, the cosine similarity is used in semantic textual
similarity tasks, but various alternative approaches exist. The MaxPool-Jaccard
approach applies the fuzzy Jaccard index to max pooled word embeddings and
has recently demonstrated a significant benefit in semantic textual similarity
tasks [37]. In addition, the DynaMax-Jaccard approach was proposed, which is
a completely unsupervised and non-parametric similarity measure that dynam-
ically extracts and max-pools good features.

Finally, I-node similarity can be computed using the Word Mover’s Dis-
tance (WMD) [20] which computes the distance of two sentences by a mapping
between the word embeddings of the sentences. An optimal mapping is found
by taking into account the distances of the words in a word embedding space, so
that each word in one sentence needs to travel the lowest distance to the words
in the other sentence.

Please note that WMD, DynaMax and MaxPool do not operate on the rep-
resentation of the whole node text but on the representation of the individual
words. As such they combine aggregation and similarity assessment.

3.4 Ontology-based Similarity Measure for S-Node Similarity

We now introduce an approach with which we aim to improve the similarity as-
sessment of argument graphs by considering the semantics of the argumentation
schemes used in the S-nodes of the graph. In our previous work [5] we only used
two different schemes and an exact match similarity. We now introduce a more
fine grained representation and created an ontology consisting of 38 argumen-
tation schemes which are arranged in a taxonomy based on a classification of
argumentation schemes [33]. Fig. 2 shows an excerpt of this ontology.

The similarity between two schemes can then be computed by using an edge-
count based approach. Wu and Palmer introduce a similarity measure simwp

that considers the depth of schemes S1, S2 and the closest common predecessor
scheme Sx of S1 and S2. The Wu and Palmer similarity of two argumentation
schemes S1 and S2 [36] is given by

simwp(S1, S2) =
2Nx

N1 +N2
(5)



8 M. Lenz et al.

Defeasible
Argumentation

Schemes

Argument from
Position to Know

Source-based
Schemes

Argument from
Expert Opinion

Non Source-
based Schemes

Practical
Reasoning

Argument from 
Positive Consequence

Argument from 
Waste

Fig. 2. Excerpt from the argumentation scheme ontology based on a classification of
argumentation schemes [33]

where N1, N2 and Nx describe the depth of the schemes S1, S2 and Sx

respectively in terms of edges from root element to scheme. Wu and Palmer
similarity assumes that schemes located deeper in the ontology are more specific
and therefore more similar.

4 Experimental Evaluation

Given the various approaches described so far for I-node similarity as well as
the advanced approach for S-node similarity, we now want to experimentally
evaluate the benefit of them. Thus, we performed a systematic evaluation to
test how well the various approaches are able to retrieve and rank cases in a way
that is in line with the assessment of a human expert.

4.1 Hypotheses

The following four hypotheses are subject of this evaluation and relate to the
quality of the ranking produced by the argument graph similarity.

– H1: The simple approach based on WV embeddings, mean aggregation, and
cosine similarity as investigated in previous work [5] can be improved by
some of the newly investigated methods.

– H2: The concatenation of embeddings achieves a higher quality than a single
embedding.

– H3: Supervised sentence embeddings achieve a higher quality than unsuper-
vised embeddings.

– H4: The use of argumentation scheme similarity improves the quality.

4.2 Experimental Setup

For the evaluation we rely on various pre-trained word embeddings and sentence
encoder models. Word2vec GoogleNews3 vectors are trained on the Google News

3 https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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dataset on about 100B tokens. GloVe4 is trained on the Common Crawl dataset
on 840B tokens. fastText5 vectors are trained on Wikipedia and Common Crawl.
The dimensionality of all word embeddings is 300. The Paragraph Vector model
was trained by us on the english Wikipedia dump with 1M tokens. The Universal
Sentence Encoder models6,7 are trained on multiple unsupervised and supervised
tasks, such as predicting context sentences [19] and classification on the SNLI
corpus. InferSent8 is trained on the SNLI corpus as well. We evaluate the model
in version 1.

For the evaluation of the retrieval we choose the annotated corpus of argu-
mentative microtexts [25] following the work in [5]. This corpus consists of 112
argument graphs with a total of 576 I-nodes and 443 S-nodes. For this paper,
we refined these argument graphs by introducing a more fine-grained annota-
tion of the S-nodes by argumentation schemes based on the ontology developed.
These refinements were made by two students who were experienced in AIF and
the OVA+ modelling tool9. For our evaluation, we used the same 24 queries
from 6 topics as in our previous work. However, due to the introduction of the
more detailed argumentation scheme representation, a new reference ranking
was needed. It was produced by the same experienced students who refined the
representation of the cases.

In our experiments, we used various combinations of the similarity methods
proposed for retrieval of cases. In each experiment all 24 queries are used and
the resulting k=10 most similar cases are considered. We assessed the relevance
of the cases (i.e. whether a case deals with the same topic as the query) as well
as the ranking of the cases. Thereby, the similarity measures are evaluated by
means of various metrics. Precision (P) measures the fraction of relevant cases
retrieved within the set of 10 most similar cases. Due to the size of the reference
rankings in our experiment, the upper limit for P achievable is 0.717. Recall (R)
measures the fraction of relevant cases retrieved. P and R are set-based,i.e., the
ranking quality itself is not assessed.

Average Precision (AP) measures the quality of the ranking by averaging the
precision at all relevant positions. Thus, AP is the area under the precision-recall
curve. A high AP value indicates that relevant elements are ranked high as well.

Normalized Discounted Cumulative Gain (NDCG) assesses that elements
with a high relevance appear early in the ranking. NDCG is computed as the
normalized sum of all relevance values in the result giving lower positions in the
ranking less weight. It is noteworthy that for NDCG non-relevant elements in
the ranking have no influence on the metric.

Correctness (CR) and Completeness (CP) [14] explicitly assess how well the
ordering of the ranking produced by similarity matches the ordering of the refer-

4 https://nlp.stanford.edu/projects/glove/
5 https://fasttext.cc/
6 https://tfhub.dev/google/universal-sentence-encoder-large/3
7 https://tfhub.dev/google/universal-sentence-encoder/2
8 https://github.com/facebookresearch/InferSent
9 http://ova.arg-tech.org/

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder/2
https://github.com/facebookresearch/InferSent
http://ova.arg-tech.org/
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ence ranking. CP measures the percentage of pairs of the reference ranking that
are included the produced ranking. CR measures concordance/disconcordance of
the orderings of those pairs, resulting in a value from [−1, 1] with higher values
indicating higher concordance. It is important to note that CR values are only
meaningful if also the CP value is high. Thus we only interpret CR values if the
CP value is above 0.9.

In the following we always report values averaged over all queries. In addition,
we show the average retrieval time in seconds on a 2014 MacBook Pro 15” with
a 2.8 GHz Intel Core i7 processor and 16 GB RAM.

4.3 Results and Discussion

In the following experiments the similarity measures for I-nodes are evaluated.
Only stopword removal is consistently performed in all conditions as this was
the most successful pre-processing approach in our previous work. The S-node
similarity measure is evaluated lastly.

The first experiment evaluates WV embeddings together with the cosine
measure as in our previous work, but using various aggregation functions. The
results are shown in Tab. 1, while the abbreviations are used as introduced in
Sections 3.3 and 4.2.

Arithmetic mean performs best regarding the unranked measures P and R
and also w.r.t. AP. For the ranked measures, max pooling led to the best NDCG
value, but for a significantly lower recall. Median achieves best results for the
ranked measure correctness among all aggregations with a completeness above
0.9. We systematically evaluated also concatenations of aggregation functions
without being able to outperform the individual methods. The two best con-
catenation results are shown in the last two rows of Tab. 1.

Next we evaluate all unsupervised and supervised embedding methods using
cosine similarity. Word embeddings are aggregated using arithmetic mean. The

Table 1. Results of retrieval with WV and cosine using different aggregation functions.

Aggregation Method Time P R AP NDCG CR CP

xa 10.625 0.692 0.965 0.924 0.834 0.106 0.956
xm 11.021 0.675 0.943 0.903 0.844 0.139 0.907
xg 6.311 0.017 0.021 0.003 0.053 − 0.0
minx 10.515 0.604 0.84 0.798 0.856 0.171 0.744
maxx 12.687 0.588 0.827 0.786 0.866 0.127 0.696

x2 9.663 0.65 0.908 0.836 0.825 0.14 0.846
x3 8.059 0.654 0.913 0.876 0.849 0.146 0.876
x5 9.932 0.608 0.853 0.805 0.84 0.064 0.734
x10 8.831 0.575 0.81 0.746 0.843 0.174 0.676
x1000 6.969 0.479 0.667 0.584 0.802 0.184 0.471

xa ⊕ xm 11.676 0.692 0.965 0.923 0.835 0.115 0.948
xa ⊕ xm ⊕ x2 ⊕ x3 11.52 0.692 0.965 0.918 0.841 0.116 0.952
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concatenation of the unsupervised embeddings have also been evaluated system-
atically, while only the best results are reported. Table 2 shows the results.

Table 2. Results of retrieval with different embedding methods using cosine and arith-
metic mean.

Embedding Method Time P R AP NDCG CR CP

DV 12.132 0.675 0.942 0.888 0.854 0.148 0.9
FT 11.312 0.675 0.943 0.909 0.847 0.141 0.914
GL 12.201 0.667 0.929 0.876 0.809 0.044 0.897
WV 10.625 0.692 0.965 0.924 0.834 0.106 0.956

DV ⊕ WV 11.737 0.696 0.97 0.934 0.855 0.097 0.958
DV ⊕ FT ⊕ WV 12.489 0.671 0.938 0.905 0.846 0.085 0.904

InferSent 40.125 0.683 0.95 0.915 0.864 0.184 0.908
USE-D 8.92 0.704 0.982 0.951 0.841 0.099 0.977
USE-T 13.785 0.713 0.994 0.972 0.848 0.12 0.992

All methods achieve a high recall and completeness. Among the unsupervised
methods WV achieves the best results w.r.t. the unranked measures. DV and
concatenations including DV achieve the best ranked results NDCG and CR.
The supervised methods further improve the results. USE-D and USE-T yield
the highest P, R, and AP scores. InferSent was best w.r.t. the ranked measures,
but was even worse than WV concerning P and R. This indicates that super-
vised methods can actually learn useful signals for semantic textual similarity.
Hypothesis H3 can thus be accepted.

The impact of the similarity measure on the retrieval quality was evaluated
next. WV with arithmetic mean is used as sentence embeddings. Table 3 shows
the results for the different similarity measures.

Table 3. Results of retrieval with WV while using different similarity measures.

Similarity Method Time P R AP NDCG CR CP

Cosine 10.625 0.692 0.965 0.924 0.834 0.106 0.956
DynaMax-Jaccard 12.276 0.692 0.964 0.934 0.877 0.274 0.936
MaxPool-Jaccard 9.725 0.417 0.58 0.548 0.846 0 .34 0 .365
WMD 88.377 0.683 0.953 0.913 0.859 0.226 0.932

Cosine and DynaMax-Jaccard perform comparably well only on the unranked
measures, while DynaMax-Jaccard significantly improves the ranking results
NDCG and CR compared to cosine. WMD achieves nearly comparable results,
but leads to very high retrieval times and is thus not competitive. MaxPool-
Jaccard is very poor on R and CP and thus not useful.

Since the DynaMax-Jaccard similarity performed best we evaluated the var-
ious unsupervised embeddings methods and their combinations again. The su-
pervised methods could not be evaluated here, since DynaMax-Jaccard works
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Table 4. Results of retrieval with different embedding methods using DynaMax-
Jaccard.

Method Time P R AP NDCG CR CP

DV 11.241 0.633 0.888 0.842 0.867 0.286 0.767
FT 10.497 0.696 0.971 0.93 0.868 0.256 0.956
GL 12.664 0.688 0.959 0.917 0.868 0.217 0.918
WV 12.276 0.692 0.964 0.934 0.877 0.274 0.936

DV ⊕ FT 13.236 0.688 0.959 0.914 0.869 0.277 0.918
DV ⊕ GL 14.077 0.667 0.931 0.891 0.883 0.274 0.812
DV ⊕ WV 13.58 0.667 0.929 0.893 0.862 0.258 0.85
FT ⊕ GL 16.772 0.675 0.943 0.907 0.872 0.278 0.899
FT ⊕ WV 12.17 0.696 0.970 0.924 0.862 0.27 0.943
GL ⊕ WV 15.25 0.679 0.949 0.903 0.867 0.192 0.853

DV ⊕ FT ⊕ GL 17.902 0.663 0.926 0.886 0.881 0.328 0.815
DV ⊕ FT ⊕ WV 15.251 0.692 0.964 0.922 0.875 0.307 0.943
DV ⊕ GL ⊕ WV 15.55 0.679 0.947 0.905 0.877 0.304 0.872
FT ⊕ GL ⊕ WV 16.721 0.671 0.938 0.897 0.873 0.264 0.832

DV ⊕ FT ⊕ GL ⊕ WV 18.551 0.679 0.948 0.908 0.868 0.222 0.888

on word embeddings and supervised methods yield sentence embeddings. The
results are shown in Table 4.

Interestingly FT embeddings perform now best w.r.t. the unranked mea-
sures and are also very high in AP. Overall concatenations are able to improve
the ranking quality. DV ⊕ FT ⊕ WV yields the strongest CR and very high
NDCG and can even improve over the results of the supervised methods us-
ing the cosine measure. Therefore hypothesis H2 can be accepted at least for
DynaMax-Jaccard. It is noteworthy that all metrics show slightly higher values
than for cosine, especially correctness and NDCG (compare Tables 2 and 4).
This indicates that DynaMax-Jaccard generally leads to an improved ranking.

The use of argumentation schemes for retrieval is evaluated next. Super-
vised embeddings are compared using cosine, unsupervised embeddings using
DynaMax-Jaccard. Concerning S-node similarity, three variants are included:
no S-node similarity (always 1), exact match similarity using the argumentation
scheme labels at the S-nodes and the ontology similarity (see Sec. 3.4). Table 5
presents the results. Since the argumentation schemes are used only in the FAC
phase only the ranked metrics are affected and reported.

For USE-T, the use of the argumentation scheme labels slightly improves
the ranking CR. The ontology-based similarity measures does not lead to an
improvement for any embedding, it even worsens the ranking results. Thus,
hypothesis H4 has to be rejected.

To come to a concluding assessment of hypothesis H1, we compare the three
best methods, USE-T, WV, and DV⊕FT⊕WV against the approach in [5] (see
Tab. 6). Again the supervised embedding is compared using cosine similarity
and unsupervised embeddings using DynaMax-Jaccard. Argumentation schemes
are not used.
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Table 5. Results of retrieval with including argumentation scheme similarity and se-
lected embedding methods

Embedding Schemes Time AP NDCG CR CP

USE-T No 13.785 0.972 0.848 0.12 0.992
USE-T Exact Match 15.541 0.925 0.843 0.136 0.992
USE-T Onto. Sim. 14.127 0.938 0.847 0.132 0.992

WV No 12.276 0.934 0.877 0.274 0.936
WV Exact Match 13.659 0.906 0.853 0.161 0.936
WV Onto. Sim. 10.677 0.902 0.851 0.174 0.936

DV ⊕ FT ⊕ WV No 15.251 0.922 0.875 0.307 0.943
DV ⊕ FT ⊕ WV Exact Match 19.83 0.908 0.859 0.252 0.943
DV ⊕ FT ⊕ WV Onto. Sim. 27.096 0.905 0.861 0.216 0.943

Table 6. Evaluation of the approach used in [5] compared to the best new methods.

Method Time P R AP NDCG CR CP

Paper [5] 10.625 0.692 0.965 0.924 0.834 0.106 0.956
USE-T 13.785 0.713 0.994 0.972 0.848 0.12 0.992
WV 12.276 0.692 0.964 0.934 0.877 0.274 0.936
WV ⊕ FT ⊕ DV 15.251 0.692 0.964 0.922 0.875 0.307 0.943

All three methods clearly improve on the baseline. USE-T has best P, R, AP
as well as CP and can reach also near the precision limit of 0.717. WV achieves
very good results with minimal complexity. DV ⊕ FT ⊕WV achieves the best
CR score. Hypothesis H1 can thus be clearly accepted. Concerning the retrieval
time, the new best methods are clearly more time consuming (up to 50 %), but
we consider this as acceptable given the resulting quality improvements.

5 Conclusion and Future Work

In this work we investigated new methods from semantic textual similarity for
improved case-based argument retrieval and demonstrated significant improve-
ments over our own previous results [5]. Unsupervised word embeddings and
concatenations achieve a good ranking quality using the DynaMax-Jaccard sim-
ilarity measure and can improve clearly on the cosine similarity measure. Super-
vised methods achieve the best results using the unranked metrics and the high-
est completeness measures. The similarity measures for argumentation schemes
cannot further improve these results. A possible reason could be that the use
of schemes yields in too many constraints when performing the graph mapping
and thus impairing the results.

In future work we want to improve the ranking quality of supervised methods
as well as explore more advanced ontological similarity measures by automatic
linking with domain specific ontologies. Another line of work would be to extend
the argument retrieval task to new benchmark corpora and in particular corpora
in German language. A big challenge is addressing semantic similarity for the
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German language as most recent methods have been mainly investigated and
optimized for the English language. Additionally, we will look at reducing the
computational complexity of the mapping algorithm, especially the A* search.
Finally, we intend to move further on to the adaptation of argument graphs by
transferring compositional adaptation methods from POCBR.

Acknowledgments. This work was funded by the German Research Founda-
tion (DFG), project 375342983.
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