Comparing Unsupervised Algorithms to Construct
Argument Graphs

Mirko Lenz™*, Lorik Dumani’ and Premtim Sahitaj’

"Trier University, Universitdtsring 15, 54296 Trier, Germany

Abstract

Computational argumentation has gained considerable attention in recent years. Various areas have
been addressed, such as extracting arguments from natural language texts into a structured form in
order to store them in an argument base, determining stances for arguments with respect to topics,
determination of inferences from statements, and much more. After so much progress has been made in
the isolated tasks, in this paper we address the next level and aim to advance the automatic generation of
argument graphs. To this end, we investigate various unsupervised methods for constructing the graphs
and measure the performance with different metrics on three different datasets. Our implementation is
publicly available on GitHub under the permissive MIT license.

Keywords

argument mining, computational argumentation, clustering

1. Introduction

Computational argumentation is a research subfield of NLP which has received much attention
and made great progress in recent years. Previous work investigated, among others, extracting
Argumentative Discourse Units (ADUs) —that is, the smallest units of argumentation which may
range from multiple words to entire paragraphs— in unstructured natural language texts [1],
determining the stances of arguments into supporting or rejecting towards a standpoint, or
retrieving a ranked list of the most convincing arguments to a query entered by the user [2].

While most prior work dealt with such isolated tasks, only a few works so far tackled the
merging of multiple tasks to generate complete argument graphs that represent the structure of a
text as well as their views in a clear, concise, and compact manner [3, 4]. The need for argument
graphs is justified not only by argument search engines [5, 6] that obtain their arguments from
such structures, but also by the many publicly available datasets such as the argumentative
essays dataset [2] as well as the argument graphs available on AIFDB. We argue that after so
much progress in this area, it is now time to combine these efforts and shift the focus to the
automatic generation of argument graphs.

In this paper, we explore several unsupervised methods to create argument graphs and
evaluate these on three datasets which are completely different in structure as well as in size

KI 2022, September 19-23, 2022, Trier, Germany

*Corresponding author.

& info@mirko-lenz.de (M. Lenz); dumani@uni-trier.de (L. Dumani); sahitaj@uni-trier.de (P. Sahitaj
J J

P/ N .

& https://www.mirko-lenz.de (M. Lenz)

@ 0000-0002-7720-0436 (M. Lenz); 0000-0001-9567-1699 (L. Dumani); 0000-0003-3908-5681 (P. Sahitaj)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

http://corpora.aifdb.org
mailto:info@mirko-lenz.de
mailto:dumani@uni-trier.de
mailto:sahitaj@uni-trier.de
https://www.mirko-lenz.de
https://orcid.org/0000-0002-7720-0436
https://orcid.org/0000-0001-9567-1699
https://orcid.org/0000-0003-3908-5681
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and domain. Since our code is publicly available on GitHub under the permissive MIT license,
interested researchers can build upon our work and use these methods as a baseline.! Each of
them expects a set of ADUs as input to produce a fully connected tree structure where each
node is an ADU. As such, we can ignore the original text of an argument—which may not
always be available anyway—and leave the detection of ADUs to future work. We assume that
each ADU supports/attacks exactly one other ADU and that there exists one ADU acting as the
root of an argument graph—the so-called major claim.

Our contributions are the following: (i) Seven algorithms for constructing argument graphs
in pseudocode together with a reference implementation in Python. (ii) A set of metrics
for evaluating our argument graphs each focused on different aspects. (iii) An experimental
evaluation on three diverse datasets that may be used as a baseline for future work.

Next, we discuss related work in section 2. In particular, we address similarities and differences
to our work. In section 3 we describe the seven methods we use utilizing pseudo code and in
section 4 we discuss the evaluation setup and results. In section 5 we conclude the paper and
provide starting points for future work.

2. Foundations and Related Work

The general approach for argument graph construction in the literature is based on the utilization
of information extracted in the previous tasks. Following the concept of claim-premise model [7,
8], the approach is to classify potentially argumentative text spans as either claim, premise,
major claim, or non-argumentative [3, 9, 10]. The claim depicts a potentially controversial
viewpoint. The arguer tries to support it with premises, which serve as evidence. Frequently,
there is also a core viewpoint in texts, the major claim. Each of these three terms is a certain
kind of an ADU—the smallest unit of argumentation introduced earlier.

Stab and Gurevych [10] describe an argument graph annotation process specifically for the
Persuasive Essays dataset because of their structured constituency. Arguments are defined as a
single claim with several premises (one-claim approach). A paragraph can consist of multiple
arguments. Premises are allowed to be connected only to a claim of the same paragraph, but not
to claims outside of this defined space. All claims are linked to the major claim. An exemplary
graph from this dataset is depicted in fig. 1. It will also be part of our experimental evaluation
in section 4.

Similar approaches are implemented by Persing and Ng [3, 9] while additional rules are
exploited and utilized for the graph construction process. As part of a larger argument mining
pipeline, Lenz et al. [4] describe and evaluate three graph construction approaches. Due to
the larger scope of their work, they were able to utilize additional information during graph
construction—for instance, the probability that one ADU is supported/attacked by another one.
An interesting approach to the graph construction task has been published by Gemechu and
Reed [11] where the authors identify different functional components (i.e., concepts, aspects,
opinions) from argumentative statements and utilize these features to connect argument struc-
tures into the final argument graph. We refer the interested reader to the surveys conducted by
Lawrence and Reed [1] as well as Schaefer and Stede [12] for more details. The methods that we

'https://github.com/recap-utr/argmining-clustering

https://github.com/recap-utr/argmining-clustering

Figure 1: First argument graph taken from the corpus of persuasive essays [10]. The textual content of
the nodes has been removed since we are interested in the structure.

introduce in this paper follow the work of Lenz et al. [4] and can be differentiated from other
research by the fact that we aim to avoid domain-specific construction rules, e.g. restricting the
connection of arguments by their (predicted) classification type.

3. Algorithms

In this section we will introduce our algorithms for constructing argument graphs from a
given set of ADUs. In addition to the aforementioned implementations in Python (used for our
evaluation in section 4), we also provide pseudocode for each of them to aid understanding
implementing them in other languages.

Before diving in, we will first define some common symbols used in the pseudocode. All
algorithms are passed a set of ADUs A = {aq,...,a,} where each a; € A is string. We
denote the ADU being major claim of an argument graph as ap,. € A. Each algorithm returns
this major claim ay,. together with a list of relations R = {ry,...,r,}. Each relation r; =
(@prem; Qclaim) € A X A is a tuple containing a premise dprem that is connected to a claim ajaim
via an inference. Some of our proposed algorithms make use of clustering methods where
C ={c1,...,c,} denotes the set of clusters C that forms a partition of A. Each cluster ¢; € C
is defined as a set of ADUs (i.e., ¢; C A).

We also use some functions that are crucial for most of the algorithms. Each ADU a € A has
a feature vector that can be accessed using the function vec(a) and is defined via a embedding
model. This vector space makes it possible to compute a centroid m for each cluster ¢; at its
center point. These vectors are also used to compute the cosine similarity between ADUs—as
an abbreviation, we use the function sim(a;, a;) = cos(vec(a;), vec(a;)).

Our algorithms are able to predict the central major claim @y, without any further information.
In addition, it is also possible to set a,. manually. For details on that matter we refer the
interested reader to our reference implementation mentioned above.

AGGLOMERATIVE With algorithm 3.1, we present a graph construction strategy that is based
on agglomerative clustering and retains its hierarchical structures throughout the construction
process. The graph construction strategy utilizes a selection metric based on cosine similarity
between embedding representations of ADUs to mimic an hypothetical concept of relatedness.
The hypothesis follows the idea that more similar ADUs have a higher chance to target the

Algorithm 3.1 Agglomerative-clustering-based algorithm for constructing argument graphs.

1 procedure AGGLOMERATIVE(ADUs A)

2 C <+ {{a}|ac A}

3 R« 0

4 while |C| > 1do

5 i, j < find the two most similar clusters in C' > Ordered s.t. |¢;| < |cj]

6 Aprem <— root of smaller cluster A[i]

7 Amerge < A[j] root ADU of larger cluster

8 Gclaim ¢ ADU of larger cluster a € c¢; having the highest similarity to premise
Gprem

9 delete entries 7, j of sets C' and A

10 R + R U {(aprem; Qclaim) }

11 C < C'U MEerGEe(Clusters ¢;, ¢;)

12 A — AU {amerge}

13 Gmc < root node of relations R

14 return R, a,.

same topics and thus provide related argumentative information. Each of the n argumentative
components starts within its own cluster (algorithm 3.1). Clusters are iteratively merged on the
basis of a given criterion—in our case, average linkage. From the pair of most similar clusters,
we identify the smaller and larger cluster. For the purpose of constructing more dense argument
graphs structures, we consider the size of the clusters to be merged. The smaller cluster proposes
the root of its respective sub-graph as premise (algorithm 3.1). Then, from the larger cluster we
identify the ADU that maximizes the similarity to the previously identified premise and denote
it as claim. Finally, we draw a relation from premise to claim (algorithm 3.1) which connects
the sub-graphs of the two respective clusters. We update our lists and continue the iteration.
Merging is repeated a total of n — 1 times and per step only two clusters are merged until all
ADUs are in the same cluster. Finally, we are left with a single connected argument graph.

DeNsITY Algorithm 3.2 is a cluster-based approach that uses HpBscAN [13, 14] internally.
HpBscAN is optimized for scenarios with a high density of data points as well as noisy data—both
of which are relevant for embeddings of natural language texts. First, the underlying algorithm
is run (algorithm 3.2) to construct the hierarchical/tree-based cluster structure. The following
steps are different for natural clusters—that is, a cluster containing actual ADUs—and synthetic
clusters—that is, a cluster with a single element that is not part of the set of ADUs A and thus
only created to allow nesting of other clusters. In the former case (algorithm 3.2), we define the
claim to be the ADU having the highest similarity to all others and create relations between it
and the remaining premises. In the latter case, we first need to resolve connections between two
synthetic clusters that have no natural cluster as a direct child. More specifically, this means
that we remove two relations from the hierarchical cluster structure Ci,ce and replace it with a
single relation (algorithm 3.2). We then can continue by connecting the claims of the synthetic
clusters to the claims of the natural clusters (algorithm 3.2).

Algorithm 3.2 Density-based algorithm for constructing argument graphs.

1 procedure DENSITY(ADUs A)

2 R+

3 ame < NULL

4 Ctree — HDBSCAN(A, Nclusters < 27 Nsamples < 1)

5 for all natural clusters cpa; € Cliree do > First deal with clusters containing ADUs
6 Qelaim — @ € Cnat s.t.sim(a, a’) > sim(d’, a”)Va" € cpat

7 if cpat is the first cluster in C' then

8 Ume < Qclaim

9 R < RU {(@prem, @claim) } for all aprem € A’

10 contract connections between two synthetic clusters having no natural clusters
11 for all synthetic clusters cgynt € Ciree do > Now, we can connect the nested clusters
12 R + R U {(claim ofcp,s, claim ofcgynt) }
13 return R, am

Divipe The main idea behind algorithm 3.3 is to divide it into smaller subproblems, solve
them individually, and aggregate these solutions later on—the so-called divide and conquer
approach [15]. More specifically, we use a relatively straightforward clustering algorithm—=#-
Means [16]—to divide the set of ADUs into smaller chunks (algorithm 3.3). This procedure
is recursively executed until there are at most njea¢ ADUs in a cluster (algorithm 3.3). This
hyperparameter may be set to an arbitrary value, but in our experiments, we set it to 3 since
most argumentation schemes [17] are composed of one claim and two premises. Within each
cluster, we select the ADU being most similar to all remaining ones to be the claim, the others are
used as premises for that claim. The k-Means algorithm expects a fixed number k corresponding
to the number of clusters that shall be created. We run the algorithm using a range of different
k’s and utilize the well-known silhouette score [18] to determine the optimal number of clusters.
In order to limit the computational overhead of this approach in some extent, we restrict the
maximum value for k to half the number of available ADUs. At the end, we receive one argument
graph where each branch corresponds to a recursive function call.

FLat Algorithm 3.4 is mainly implemented as a baseline/comparison algorithm and is borrowed
from Lenz et al. [4]. First, the major claim is identified using the same heuristic as for the
algorithm Sim (algorithm 3.4). Then, all remaining ADUs are directly connected to the major
claim, resulting in a graph with only two levels (algorithm 3.4).

ORrRDER The idea of algorithm 3.5 is that we sort ADUs based on their similarity to the major
claim and process them in that order with some degree of freedom. This uses the assumption
that ADUs being similar to the major claim should be connected to it as claims. More precisely,
we select the candidate in the k-neighborhood (algorithm 3.5) as premise that maximizes the
similarity between claim and premise for each queued claim. The selected premise is then
removed from the queue and connected to the claim. Finally, we update the variables and
continue the iteration until all ADUs are connected to one graph structure. The approach is

Algorithm 3.3 Divide-based algorithm for constructing argument graphs.

1 procedure D1viDE(ADUs A, Centroid m < NULL, Maximum number of leaf nodes njear <
3)

2 R+ 10

3 if m = NULL then

4 m < arithmetic mean of vec(a) for alla € A

5 Gelaim < @ € A having the highest similarity to all other ADUs

6 A+ A\ {aclaim }

7 if |A| < njear then > Termination criterion for recursive calls
8 return A X {Gclaim }, Gclaim > Connect all remaining ADUs to the claim acaim
9 kmin < 2 > We need at least two clusters ...
10 kmax < max(|A| + 2, knin) + 1 > ...and at most half the number of ADUs
11 kopt — value of k € [kmin, kmax] resulting in the highest silhouette score
12 for all centroids m’ € KMEANS(A, kopt) do
13 A’ + subset of A where each a € A is assigned to centroid m’
14 R',al,.... < DIvipe(A’,m’) > Call function on subset of ADUs
15 R <+ RUR U{(al},5> Aclaim) }

16 return R, dclaim

Algorithm 3.4 Flat algorithm for constructing argument graphs.

1 procedure FLAT(ADUs A)

2 R+

3 Gme < a € A having the highest similarity to all other ADUs
4 foralla € A\ {amc} do

5 R+ RU{(a,ame)}

6 return R, am

applied TOP-DOWN and is viable from any arbitrary major claim position.

Ranpom The purpose of algorithm 3.6 is to serve as an evaluation baseline. We do not
consider similarities at all, but follow a completely random approach. Consequently, the major
claim is chosen randomly (algorithm 3.6). For all remaining ADUS, we randomly select one that
is not yet assigned together with one that is part of the graph (algorithm 3.6).

Sim Algorithm 3.7 may be viewed as a more simplistic version of ORDER. In essence, we leave
out the sorting step of ADUs to the major claim. We start by selecting the ADU having the
highest similarity to all others as the major claim (algorithm 3.7). Then, we iterate over the
remaining ADUs (algorithm 3.7) and compute the similarity between all ADUs that are not part
of the graph to the ones already added by constructing the cross product of the sets A and A’
(algorithm 3.7). A new relation is then created between the two ADUs selected in the previous
step (algorithm 3.7) until all ADUs are connected.

Algorithm 3.5 Ordering-based algorithm for constructing argument graphs.
1 procedure ORDER(ADUs A)

2 R+«

3 ame < @ € A having the highest similarity to all other ADUs

4 A+ A\ A{amc}

5 SorT(A) based on similarity of an ADU a € A to the major claim ap,

6 A« {ame}

7 while |A| > 0 do

8 Aprem s Gclaim <— pair of ADUs in A x A’ having the highest similarity
> s.t. CONSTRAINT(Gprem , Gclaim) holds

9 R+ RU {(aprema aclaim)}

10 A+ A\ {aprem}

11 A"+ A" U{aprem }

12 return R, ap

13 procedure CONSTRAINT(ADUS aprem, Gelaim, Threshold k < 2)
14 return [pos(aclaim) — PoS(aprem)| < k> pos denotes the position of the ADUs in
algorithm 3.5

Algorithm 3.6 Random algorithm for constructing argument graphs.

1 procedure RaANDOM(ADUs A)
2 R+«

3 ame < random(A)

4 A+ A\ {amc}, A + {amc}

5 while |[A| > 0do

6 Aprem s Qclaim <— random(A x A')

7 R+« RU {(aprema aclaim)}

8 A+— A\{aprem}, A+ A U{aprem}
9 return R, ap,

4. Evaluation

Having presented our proposed algorithms for constructing argument graphs, we will now
conduct an experimental evaluation with the goal of discussing the advantages as well as the
drawbacks of them. We will briefly describe our experimental setup, present the results, and
discuss them afterwards.

4.1. Datasets

In order to obtain meaningful results, we evaluated our algorithms on a total of three datasets.
The first is the Microtexts dataset from Peldszus and Stede [19] as offered by the AIFdb project.”
This comprises a total of 110 argument graphs, each containing 4 ADUs on average. The second

*http://corpora.aifdb.org/Microtext

http://corpora.aifdb.org/Microtext

Algorithm 3.7 Similarity-based algorithm for constructing argument graphs.

1 procedure SIM(ADUs A)
2 R+«
ame < @ € A having the highest similarity to all other ADUs
A<+ A\ {ame}
A"+ {ame}
while |A] > 0 do
Gprem; Qclaim <— pair of ADUs in A x A’ having the highest similarity

R < R U {(@prem; Gclaim) }
A+ A \ {aprem}
10 A — AU {aprem}

11 return R, a,c

O 00 N N g W

dataset by Stab and Gurevych [10] includes a total of 402 persuasive essays. Herein, the structure
is more complex than for the Microtexts because, as already described in section 2, they consist
of three levels, namely the major claim level, the claim level, and the premise level. The average
number of ADUs per graph here is 14. The last dataset is a subset of the Kialo dataset containing
all graphs obtained by Lenz et al. [4] that do not exceed a maximum size of 100 KB and is once
again more complex, comprising a total of 90 argument graphs with an average of 41 ADUs per
graph.

4.2. Metrics
As measures for graphs yield different scores depending on the goal, we use multiple:

1. The duration t,,5 (measued in ms) needed to reconstruct the graph.

2. The graph edit similarity simeq;; that computes the number edit of operations needed to
transform one graph to another.” We transform this disteq;; to a similarity score in [0, 1]
by computing

_ disteqit (91, 92))
distmax (g1, 92)

with dist;,ax denoting the maximum number of edit operations—that is, removing every

element of one graph and adding all elements of the other. In our paper, the nodes are

identical, meaning that edit operations only operate on edges.

simedit (91, 92) =

3. The Jaccard similarity sim ; assesses the number of correctly predicted edges as

sim (g1, g2) = J(edges(g1), edges(gz)) (2)

with edges(g) being the set of edges of argument graph g and J being the Jaccard index
that for the two sets A, B is defined as [20]
|AN B
J(A,B) = . 3

*We utilize the library graphkit-learn: https:/github.com/jajupmochi/graphkit-learn

https://github.com/jajupmochi/graphkit-learn

4. The major claim agreement simy,. is a binary metric that is defined as

17 if mc(gl) = mc(92)7
0, otherwise.

Simmc(gla 92) = {

with mc(g) being the major claim of argument graph g.

5. The metric simgepsn is based on the average tree depth [21] that is a visual indicator
whether the vertical structure of two graphs overlaps. It is defined as

. |depth(g1) — depth(go)]
e 5 =1- 5
smaepn(91.92) = 1= e pth(gn), depth(ga)) ®)

with depth(g) denoting the average tree depth of an argument graph g.

6. Similar to simgeptn, the metric simpyeaqen functions as a visual indicator of a graph’s
horizontal structure. We determine the mean average error of the number of nodes each
graph has on each level and define the operators level;(g) for retrieving the number of
nodes on level i of argument graph g as well as levels(g) for determining the total levels
of graph ¢g. Using n = max(levels(g1), levels(g2)) and the equation

n
. level; — level;
dlStbreadth(gng) = E | Z(gl) n 2(92)’7 (6)
i=1

we can now define simgepin as

distpreadth (91, 92)

Ziezvfls(gl) level;(g1)

Simbreadth(gla 92) =1-

4.3. Implementation Notes

We implemented the project with Python* and seeded random states with the integer 0 to
get deterministic results. We also created a Docker container that makes it straightforward
to reproduce our results. For the computation of the embeddings we use the popular library
spaCy. We conduct experiments using the standard model en_core_web_1g based on plain
word embeddings as well as the more advanced en_core_web_trf utilizing transformer-based
embeddings.’ To parse the argument graph corpora, we utilize the arguebuf library [22].

4.4. Results

Table 1 shows the performance of our methods on the three datasets with the different evaluation
metrics. The main findings are that (i) the baselines FLAT performs comparatively poorly for all
three datasets, (ii) while the comparison method RaNpowMm yields average results (as expected),
our methods perform better across the board, (iii) more complex argument graphs are harder

*https://github.com/recap-utr/argmining-clustering
*https://spacy.io/

https://github.com/recap-utr/argmining-clustering
https://spacy.io/

Table 1
Evaluation results of the proposed algorithms when applied to different datasets. The best scores for
each metric in a dataset are marked in bold.

Dataset Algorithm tms SiMeqis simy siMye SiMpreadth SiMdepth
AGGLOMERATIVE 0.932 0.755 0.144 0.209 0.807 0.776

" DENSITY 1.576 0.795 0.148 0.209 0.861 0.872
}3 DiviDE 38.566 0.741 0.112 0.136 0.816 0.834
§ FLAT 0.040 0.830 0.120 0.145 0.862 0.876
§ ORDER 0.070 0.745 0.110 0.145 0.826 0.793
RANDOM 0.043 0.728 0.081 0.045 0.732 0.654

Sim 0.069 0.748 0.117 0.145 0.857 0.833
AGGLOMERATIVE 26.261 0.545 0.074 0.264 0.859 0.757
DENSITY 2.543 0.596 0.057 0.097 0.824 0.830

o DiviDE 312.668 0.540 0.054 0.241 0.850 0.815
o FLAT 0.053 0.671 0.061 0.236 0.623 0.648
v ORDER 0.165 0.549 0.088 0.236 0.864 0.613
RANDOM 0.077 0.554 0.041 0.000 0.840 0.750

Sim 0.422 0.549 0.062 0.236 0.877 0.843
AGGLOMERATIVE ~ 1735.590 0.448 0.037 0.011 0.887 0.615
DENSITY 5.584 0.500 0.022 0.056 0.882 0.826

° DiviDE 2335.256 0.439 0.022 0.000 0.855 0.699
K= FLAT 0.096 0.619 0.010 0.000 0.721 0.577
~ ORDER 1.763 0.474 0.073 0.000 0.924 0.363
RANDOM 0.173 0.448 0.016 0.000 0.895 0.670

Sim 8.043 0.440 0.028 0.000 0.906 0.752

to generate automatically, and (iv) contrary to our expectation, DIVIDE is computationally
expensive (most likely caused by multiple runs to determine the best silhouette score). We
conducted the same experiments with the transformer-based model en_core_web_trf and
also when using the major claim from the gold standard, but did not observe major improvements
w.r.t. the metrics.

4.5. Case Study

Since the creation of these rather complex graph structures is quite subjective [23], quantitative
results as shown in table 1 only tell a part of the story. To complement our findings, fig. 2 shows
the result of all seven algorithms when applied to the set of ADUs available in the exemplary
graph shown in fig. 1. The corresponding evaluation metrics are depicted in table 2. Please note
that the text is not readable due to size constraint of this publication. Nonetheless, fig. 2 still
provides valuable insights into the different graph structures that are created by our proposed
algorithms. Compared to the original graph (fig. 1), we observe that (i) the structures generated
by FLAT, AGGLOMERATIVE, ORDER, and RANDOM greatly differ w.r.t. the number of levels, (ii)
the only one having the same number of levels is DENsITY despite having a different edge
distribution, and (iii) only one of the approaches is able to detect the correct major claim. A

= o =
==
- o

= e =
===

(a) AGGLOMERATIVE (b) ORDER (c) Ranpom
- -
" - =
] [

-:L—; =

L -
(d) DENSITY (e) D1vIDE
z
_ e g
(f) Frat (g) StM

Figure 2: Case study of our algorithms when applied to the ADUs of fig. 1.

final takeaway from this comparison is that the metrics used for our comparison give a rather
complete overview of the results. Using simeq;it, we can tell that the number of correctly drawn
edges is low for all approaches, while there are with high values for simpreaqtn and simgeptn
(e.g., DENSITY) that still look rather similar to the original.

5. Conclusion and Future Work

In this paper, we have successfully implemented a series of unsupervised algorithms for con-
structing highly structured argument graphs from an unordered set of ADUs. In addition, we
introduced metrics that assess different properties of the resulting graphs and provide a com-
prehensive numerical view on the results. Lastly, we have demonstrated that our approaches

Table 2
Evaluation results for graphs depicted in fig. 2. The best scores for each metric are marked in bold.

Algorithm tms SiMegiy Simy SiMpye SiMpreadth SiMdepth
AGGLOMERATIVE 5.798 0.579 0.125 1.000 0.822 0.800
DENSITY 4.826 0.632 0.059 0.000 1.000 0.952
Divibe 150.204 0.579 0.125 0.000 0.889 0.900
FLAT 0.353 0.684 0.000 0.000 0.556 0.667
ORDER 0.430 0.421 0.059 0.000 0.852 0.800
RANDOM 0.255 0.526 0.000 0.000 0.778 0.714
Sim 0.562 0.395 0.059 0.000 0.944 0.938

create vastly different graphs from the same input data. The construction of argument graphs
still is a rather subjective topic where even humans may not share the same opinion. Thus, the
least our algorithms provide is a different perspective on the internal structure of an argument.
We consider DENSITY to be the most promising algorithm as it produces rather consistent
result even for vastly different corpora. In future work it may be worth investigating whether
the availability of multiple argument graphs of the same source has a positive impact on the
understandability of an argument for certain types of users. Another area of improvement is
the detection of the correct major claim which could be solved using a binary classifier trained
on this task. Such approaches could then in turn be combined with our proposed algorithms to
achieve even better results.

References

[1] J. Lawrence, C. Reed, Argument Mining: A Survey, Computational Linguistics 45 (2019)
765-818. URL: https://doi.org/10.1162/coli_a_00364. doi:10.1162/coli_a_00364.

[2] C. Stab, . Gurevych, Recognizing insufficiently supported arguments in argumentative
essays, in: M. Lapata, P. Blunsom, A. Koller (Eds.), Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, Association for Computational
Linguistics, 2017, pp. 980-990. URL: https://doi.org/10.18653/v1/e17-1092. doi:10. 18653/
v1l/el7-1092.

[3] I Persing, V. Ng, End-to-end argumentation mining in student essays, in: K. Knight,
A. Nenkova, O. Rambow (Eds.), NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, The Association for Com-
putational Linguistics, 2016, pp. 1384-1394. URL: https://doi.org/10.18653/v1/n16-1164.
doi:10.18653/v1/n16-1164.

[4] M. Lenz, P. Sahitaj, S. Kallenberg, C. Coors, L. Dumani, R. Schenkel, R. Bergmann, Towards
an argument mining pipeline transforming texts to argument graphs, in: H. Prakken,
S. Bistarelli, F. Santini, C. Taticchi (Eds.), Computational Models of Argument - Proceedings
of COMMA 2020, Perugia, Italy, September 4-11, 2020, volume 326 of Frontiers in Artificial

https://doi.org/10.1162/coli_a_00364
http://dx.doi.org/10.1162/coli_a_00364
https://doi.org/10.18653/v1/e17-1092
http://dx.doi.org/10.18653/v1/e17-1092
http://dx.doi.org/10.18653/v1/e17-1092
https://doi.org/10.18653/v1/n16-1164
http://dx.doi.org/10.18653/v1/n16-1164

(6]

[12]

[13]

Intelligence and Applications, I0S Press, 2020, pp. 263-270. URL: https://doi.org/10.3233/
FAIA200510. doi:10.3233/FATA200510.

H. Wachsmuth, M. Potthast, K. A. Khatib, Y. Ajjour, J. Puschmann, J. Qu, J. Dorsch,
V. Morari, J. Bevendorff, B. Stein, Building an argument search engine for the web, in:
I. Habernal, I. Gurevych, K. D. Ashley, C. Cardie, N. L. Green, D.]J. Litman, G. Petasis,
C.Reed, N. Slonim, V. R. Walker (Eds.), Proceedings of the 4th Workshop on Argument
Mining, ArgMining@EMNLP 2017, Copenhagen, Denmark, September 8, 2017, Association
for Computational Linguistics, 2017, pp. 49-59. URL: https://doi.org/10.18653/v1/w17-5106.
doi:10.18653/v1/w17-5106.

C. Stab,]. Daxenberger, C. Stahlhut, T. Miller, B. Schiller, C. Tauchmann, S. Eger, I. Gurevych,
Argumentext: Searching for arguments in heterogeneous sources, in: Y. Liu, T. Paek, M. S.
Patwardhan (Eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 2-4, 2018, Demonstrations, Association for Computational Linguistics, 2018, pp.
21-25. URL: https://doi.org/10.18653/v1/n18-5005. doi:10.18653/v1/n18-5005.

B. James, Freeman. dialectics and the macrostructure of arguments: A theory of argument
structure, 1991.

I. Habernal, I. Gurevych, Argumentation mining in user-generated web discourse, CoRR
abs/1601.02403 (2016). URL: http://arxiv.org/abs/1601.02403. arxXiv:1601.02403.

L Persing, V. Ng, Unsupervised argumentation mining in student essays, in: N. Calzolari,
F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard,
J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of The 12th
Language Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-
16, 2020, European Language Resources Association, 2020, pp. 6795-6803. URL: https:
//aclanthology.org/2020.Irec-1.839/.

C. Stab, I. Gurevych, Parsing argumentation structures in persuasive essays, Comput.
Linguistics 43 (2017) 619-659. URL: https://doi.org/10.1162/COLI_a_00295. doi:10.1162/
COLI_a_00295.

D. Gemechu, C. Reed, Decompositional argument mining: A general purpose approach
for argument graph construction, in: A. Korhonen, D. R. Traum, L. Marquez (Eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Association for
Computational Linguistics, 2019, pp. 516-526. URL: https://doi.org/10.18653/v1/p19-1049.
doi:10.18653/v1/p19-1049.

R. Schaefer, M. Stede, Argument Mining on Twitter: A survey, it - Information Technology
63 (2021) 45-58. URL: https://www.degruyter.com/document/doi/10.1515/itit-2020-0053/
html. doi:10.1515/itit-2020-0053.

R.J. G. B. Campello, D. Moulavi, J. Sander, Density-Based Clustering Based on Hierarchical
Density Estimates, in: J. Pei, V. S. Tseng, L. Cao, H. Motoda, G. Xu (Eds.), Advances in
Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, Springer,
2013, pp. 160-172. doi:10.1007/978-3-642-37456-2_14.

L. McInnes, J. Healy, S. Astels, Hdbscan: Hierarchical density based clustering, The Journal
of Open Source Software 2 (2017) 205. URL: http://joss.theoj.org/papers/10.21105/j0ss.00205.
d0i:10.21105/joss.00205.

https://doi.org/10.3233/FAIA200510
https://doi.org/10.3233/FAIA200510
http://dx.doi.org/10.3233/FAIA200510
https://doi.org/10.18653/v1/w17-5106
http://dx.doi.org/10.18653/v1/w17-5106
https://doi.org/10.18653/v1/n18-5005
http://dx.doi.org/10.18653/v1/n18-5005
http://arxiv.org/abs/1601.02403
http://arxiv.org/abs/1601.02403
https://aclanthology.org/2020.lrec-1.839/
https://aclanthology.org/2020.lrec-1.839/
https://doi.org/10.1162/COLI_a_00295
http://dx.doi.org/10.1162/COLI_a_00295
http://dx.doi.org/10.1162/COLI_a_00295
https://doi.org/10.18653/v1/p19-1049
http://dx.doi.org/10.18653/v1/p19-1049
https://www.degruyter.com/document/doi/10.1515/itit-2020-0053/html
https://www.degruyter.com/document/doi/10.1515/itit-2020-0053/html
http://dx.doi.org/10.1515/itit-2020-0053
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://joss.theoj.org/papers/10.21105/joss.00205
http://dx.doi.org/10.21105/joss.00205

[15]

D. R. Smith, The design of divide and conquer algorithms, Science of Computer
Programming 5 (1985) 37-58. URL: https://www.sciencedirect.com/science/article/pii/
0167642385900036. doi:10.1016/0167-6423(85)90003-6.

[16] J. MacQueen, Some methods for classification and analysis of multivariate ob-

[19]

[20]

servations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, 1967, pp. 281-297. URL: https://projecteuclid.
org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/
Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/
Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/
1200512992?tab=ChapterArticleLink.

D. Walton, C. Reed, F. Macagno, Argumentation schemes, Cambridge University Press,
2008.

P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis, Journal of Computational and Applied Mathematics 20 (1987) 53-65.
URL: https://www.sciencedirect.com/science/article/pii/0377042787901257. doi:10. 1016/
0377-0427(87)90125-7.

A. Peldszus, M. Stede, Joint prediction in mst-style discourse parsing for argumen-
tation mining, in: L. Marquez, C. Callison-Burch, J. Su, D. Pighin, Y. Marton (Eds.),
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, The Association for
Computational Linguistics, 2015, pp. 938-948. URL: https://doi.org/10.18653/v1/d15-1110.
doi:10.18653/v1/d15-1110.

P. Jaccard, The Distribution of the Flora in the Alpine Zone, New Phytologist 11 (1912) 37—
50. URL: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611 x.
doi:10.1111/3j.1469-8137.1912.tb05611.x.

[21] J. Nesetfril, P. Ossona de Mendez, Bounded Height Trees and Tree-Depth, in: J. Nesetfil,

[22]

[23]

P. Ossona de Mendez (Eds.), Sparsity: Graphs, Structures, and Algorithms, Algo-
rithms and Combinatorics, Springer, 2012, pp. 115-144. URL: https://doi.org/10.1007/
978-3-642-27875-4_6.doi:10.1007/978-3-642-27875-4_6.

M. Lenz, R. Bergmann, User-Centric Argument Mining with ArgueMapper and Arguebuf,
in: Computational Models of Argument, volume 353 of Frontiers in Artificial Intelligence
and Applications, 10S Press, Cardiff, Wales, 2022, pp. 367-368. URL: https://ebooks.iospress.
nl/doi/10.3233/FAIA220176. doi:10.3233/FATIA220176.

L. Dumani, M. Biertz, A. Witry, A.-K. Ludwig, M. Lenz, S. Ollinger, R. Bergmann,
R. Schenkel, The ReCAP Corpus: A Corpus of Complex Argument Graphs on German
Education Politics, in: 2021 IEEE 15th International Conference on Semantic Computing
(ICSC), 2021, pp. 248-255. d0i:10.1109/ICSC50631.2021.00083.

https://www.sciencedirect.com/science/article/pii/0167642385900036
https://www.sciencedirect.com/science/article/pii/0167642385900036
http://dx.doi.org/10.1016/0167-6423(85)90003-6
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992?tab=ChapterArticleLink
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992?tab=ChapterArticleLink
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992?tab=ChapterArticleLink
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992?tab=ChapterArticleLink
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992?tab=ChapterArticleLink
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.18653/v1/d15-1110
http://dx.doi.org/10.18653/v1/d15-1110
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1007/978-3-642-27875-4_6
https://doi.org/10.1007/978-3-642-27875-4_6
http://dx.doi.org/10.1007/978-3-642-27875-4_6
https://ebooks.iospress.nl/doi/10.3233/FAIA220176
https://ebooks.iospress.nl/doi/10.3233/FAIA220176
http://dx.doi.org/10.3233/FAIA220176
http://dx.doi.org/10.1109/ICSC50631.2021.00083

	1 Introduction
	2 Foundations and Related Work
	3 Algorithms
	4 Evaluation
	4.1 Datasets
	4.2 Metrics
	4.3 Implementation Notes
	4.4 Results
	4.5 Case Study

	5 Conclusion and Future Work

