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Abstract. In Case-Based Reasoning (CBR), past experience is used to
solve new problems. Determining the most relevant cases is a crucial as-
pect of this process and is typically based on one or multiple manually-
defined similarity measures, requiring deep domain knowledge. To over-
come the knowledge-acquisition bottleneck, we propose the use of Large
Language Models (LLMs) to automatically assess similarities between
cases. We present three distinct approaches where the model is used
for different tasks: (i) to predict similarity scores, (ii) to assess pairwise
preferences, and (iii) to automatically configure similarity measures. Our
conceptual work is accompanied by an open-source Python implementa-
tion that we use to evaluate the approaches on three different domains
by comparing them to manually crafted similarity measures. Our results
show that directly using LLM-based scores does not align well with the
baseline rankings, but letting the LLM automatically configure the mea-
sures yields rankings that closely resemble the expert-defined ones.

Keywords: Case-Based Reasoning · Large Language Models · Similar-
ities · Ranking · Evaluation.

1 Introduction

Case-Based Reasoning (CBR) [1,29] is based on the core principle that similar
problems have similar solutions [28]. Given some new problem, CBR systems
determine the most relevant past cases and reuse their solutions with the goal of
maximizing the utility of the solution for the user. In real-world applications, the
notion of utility is hard to assess objectively and thus often approximated via
the concept of similarity. The computation of similarities within parts of a CBR
application (e.g., during case retrieval) is conducted via similarity measures. De-
pending on the complexity of the case representation, defining an appropriate
similarity configuration is a challenging task that may involve domain knowl-
edge and close collaboration with domain experts. This knowledge-acquisition
bottleneck can potentially hinder the deployment of CBR systems [13].
⋆ The Version of Record is available online: doi.org/10.1007/978-3-031-96559-3_9
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At the same time, the field of Machine Learning (ML) has made significant
advancements in recent years, particularly with the rise of Deep Learning (DL)
and Large Language Models (LLMs) [8]. These models are widely used in various
domains and often serve as baselines for the development of new ML techniques.
With CBR being a problem-solving methodology that is open for new develop-
ments, such techniques have already been investigated by the community—for
instance, as an embedding-based similarity method for texts [6] or an explana-
tion technique for procedural cases [24]. Such hybrid approaches allow to combine
the powerful text generation and understanding capabilities of LLMs with the
structured domain knowledge and symbolic reasoning capabilities of CBR sys-
tems. Compared to traditional supervised ML approaches that require extensive
amounts of labeled training data, LLMs use few-shot or even zero-shot learning
to generate predictions based on a few examples or even just the prompt. This
means that the information available in a CBR system, such as the case base
and the vocabulary, can be used to guide the model in generating the desired
output, accelerating the development of robust CBR systems.

This paper aims to explore the potential of LLMs for similarity assessment
and case retrieval in CBR systems. We see an opportunity in using LLMs to
automatically assess similarities between cases, thereby reducing the knowledge-
acquisition effort. Besides directly generating similarity scores, the models may
also be valuable for configuring established CBR applications—for instance, by
selecting appropriate measures for certain attributes. Preliminary work in this
direction has already been done by Wilkerson and Leake [36], who conducted
several experiments with LLMs to assess similarities in a CBR system. While
their results indicate limited usefulness of LLMs for this task, we argue that in-
tegrating more advanced prompting techniques and abstracting from traditional
similarity-based retrieval can enhance their effectiveness—especially when deal-
ing with different model sizes. To address this research gap, our paper contains
the following contributions: (i) Three distinct retrieval strategies tailored for dif-
ferent types of LLMs, (ii) an experimental evaluation on three different domains
with a selection of proprietary and open-weight models, and (iii) an open-source
Python implementation of the approaches with a command-line interface.

The remainder of this paper is structured as follows: Section 2 introduces
foundations regarding similarity measures, followed by an overview of related
work in Section 3. Section 4 presents our approaches that are evaluated in Sec-
tion 5. Finally, Section 6 concludes the paper and presents future work.

2 Foundations

In this section, we provide an overview of the basic concepts relevant to our
work. After a brief introduction to traditional similarity-based retrieval and its
potential shortcomings in Section 2.1, we discuss alternative retrieval techniques
involving pairwise case preferences and rankings in Section 2.2. Additionally, we
present the potential of LLMs to reduce the knowledge-acquisition effort in CBR
systems by automatically learning similarity measures from data in Section 2.3.
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2.1 Similarity-Based Retrieval

This paper takes a more general view on the retrieval process—simply speaking,
as a selection of the most relevant cases of a case base w.r.t. to a query. In
the traditional CBR process, the retrieval step selects the most relevant cases
from the case base based on their similarity to the query. Thereby, the similarity
between cases acts as a proxy for their utility which, in turn, determines the
reusability of a case to solve the current problem [28,29].

This traditional approach comes with some shortcomings. One of the main
issues is the complex and time-consuming process of defining the similarity mea-
sures, known as the knowledge-acquisition bottleneck [13]. It requires a deep
understanding of the domain and the use case to define proper similarity mea-
sures which is often not available or difficult to obtain. While the knowledge-
acquisition bottleneck refers to all types of knowledge in a CBR system [29], it
can be particularly pronounced for the similarity knowledge. Additionally, the
concrete similarity values themselves come with some challenges that further
increase the manual effort [15]. First, they are not directly interpretable, making
it difficult to understand the reasoning behind the retrieval process and even
hindering domain experts from working with them. Second, the similarity values
are often not consistent across different cases, similarity measures, and similarity
models, leading to unreliable retrieval results. For example, the similarities of a
Levenshtein measure are usually not comparable to scores based on embeddings.
Finally, the values are only meaningful in relation to each other—for instance, a
case with a similarity of 0.8 is more useful relative to a case with a similarity of
0.4, but may not actually provide twice the utility for solving the problem.

2.2 Abstracting from Similarities

There are several ways of overcoming the aforementioned challenges with tradi-
tional similarity-based retrieval. One approach is to abstract from similarities by
using preference relations [15] and, more general, case ranking techniques [11].
Thereby, the goal is to determine the most relevant cases for a given query
based on their relative preferences rather than their absolute similarity values.
For example, given two cases ci and cj , the preference relation ci ≻ cj indicates
that case ci is preferred over case cj for the given query. This allows for a more
intuitive understanding of the retrieval process, as it focuses on the relative
importance of cases rather than their absolute similarity values. Determining
preferences rather than specific similarity values usually aligns better with the
human perception of ranking and retrieval [15], as pairwise similarities can be
hard to interpret and only meaningful in comparison to other pairwise similari-
ties. On the other hand, pairwise preference are often interpretable on their own
(“A is more relevant than B”) and, thus, easier to determine for domain experts.

As pairwise preferences do not provide a complete ranking of the cases, they
need to be aggregated to create a ranked list of cases. This step is usually re-
ferred to as rank aggregation and is a common task in various fields, including
information retrieval, recommender systems, and social choice theory [15]. Rank
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aggregation can be performed using various techniques [2]—we want to point
out specific rank aggregation techniques from the field of information retrieval
for the web which are subsumed under the term centrality measures [11]. Cen-
trality measures assess node importance in networks, offering a way to combine
multiple rankings into a single consensus. In rank aggregation, items are nodes
and their pairwise comparisons form edges, so measures like degree, closeness,
betweenness, and eigenvector centrality (e.g., PageRank [25]) reveal consistently
influential items. We see strong potential of using centrality measures in CBR,
because a list of pairwise case preferences closely resembles a network of nodes
and edges and runtime optimizations such as power iteration [25] can be em-
ployed for efficient computation even on large case bases.

2.3 Automatic Learning with LLMs

Whether the retrieval process is based on similarity values or preferences, the
usage of ML techniques can help to reduce the knowledge-acquisition effort in
CBR systems. Several approaches have been proposed in the past [23,37,14] with
the most recent and prominent approaches being based on DL techniques—more
specifically, on LLMs [36,7,19,35].

LLMs are neural networks specifically designed to process and generate nat-
ural language. A comprehensive introduction to the topic is beyond the scope
of this paper—instead, we give a brief overview. These models are built on the
transformer architecture, leveraging the attention mechanism to process an input
sequence of text [33]. OpenAI’s Generative Pre-trained Transformer (GPT) [27]
series, widely recognized through ChatGPT, employs a decoder-only architec-
ture that generates the next token based on the preceding sequence. Rather
than fine-tuning the model for specific tasks, prompting techniques can be used
to steer the model toward the desired output. This can be achieved through few-
shot learning, where examples of input-output pairs are provided, or zero-shot
learning, which relies solely on user input without example outputs [8].

Among other aspects, LLMs can help mitigate the knowledge-acquisition
bottleneck by capturing domain expertise from large text corpora. Their learned
representations allow CBR engineers to create, refine, or expand case structures,
vocabularies, and similarity measures. This reduces the need for deep domain
knowledge and accelerates the development of robust CBR systems.

3 Related Work

Research on the synergies between CBR and LLMs is a prominent topic in the
CBR community, resulting in dedicated workshops at ICCBR 2024 and 2025 and
a research manifesto of many researchers from the community [3]. One of the mo-
tivations is to combine the strengths of LLMs and CBR methods to overcome the
respective weaknesses based on the concept of neuro-symbolic Artificial Intelli-
gence (AI) [30,18]. Most approaches can either be categorized as LLMs improving
CBR or CBR improving LLMs [3]. Approaches of the first category are mostly
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focused on the knowledge engineering process, specifically using the rich capa-
bilities of LLMs to deal with textual data—for instance, modeling of planning
knowledge [7], adaptation of arguments [19], or case elicitation [35]. Approaches
of the second category are mostly focused on integrating the symbolic knowledge
and reasoning capabilities of CBR systems into the text generation process of
LLMs—for instance, to enhance LLMs with a Retrieval-Augmented Generation
(RAG) [21] process guided by a CBR system [38], to use the CBR knowledge as
persistent memory for LLMs improving their performance in specific tasks [34],
and other use cases [32,24,12]. Our paper mostly fits in the former category,
addressing opportunities 5.4, 6.1, and 6.2 of Bach et al. [3].

The work of Wilkerson and Leake [36] is the one most closely related to
our work. They discuss the use of LLMs for similarity-based retrieval and case
adaptation and compare several scenarios where they vary the information that
is provided to the model. This information contains the case features but, de-
pending on the prompting strategy, also the best results of a k-NN retrieval
conducted before prompting. The experiments show that LLMs generally per-
form poorly in similarity assessment and case ranking but additional knowledge
such as the k-NN retrieval results can improve their performance. Our approach
differs from this work mainly in two aspects: First, we take a more general view
on the retrieval process, simply speaking, as a selection of the most relevant
cases of a case base w.r.t. to a query. More specifically, we abstract the task of
the LLM from predicting similarities to predicting pairwise preferences, rankings
and similarity measures, which is the base of the three LLM-based approaches
we propose. Second, we focus strongly on reducing the knowledge-acquisition ef-
fort and, thus, design the approaches to function without the need for manually
defined similarity measures. While a hybrid approach as proposed by Wilkerson
and Leake [36] is a valid idea—for instance, if an existing CBR system is to be
improved, we want to reduce the effort of defining the similarity measures in the
first place. This lowers the barrier of entry for inexperienced CBR engineers and
is especially important for domains where the knowledge-acquisition bottleneck
is particularly strong. The common problem of LLMs returning inconsistent or
even contradictory information is also considered in our work: We propose a
method that outputs a similarity configuration which can then serve as a “first
draft” for experienced CBR engineers to come to a final configuration faster.

4 Assessing Similarities via LLMs

Our approaches for assessing similarities using LLMs are motivated by the short-
comings of traditional similarity-based retrieval (see Figure 1a): CBR engineers
analyze the respective domain with the available cases and possibly consult do-
main experts to come up with the required definitions. It may happen that mul-
tiple iterations are needed to find a suitable configuration—potentially delaying
the deployment of the CBR system if the domain is not well understood or the
domain expert is not available. All of this can be done offline with the acquired
knowledge being incorporated into the application. For subsequent queries, the
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Fig. 1: Approaches for assessing similarities using LLMs.

CBR system then uses this configuration to compute the similarities to all avail-
able cases in an online phase. The runtime of this process depends on the com-
plexity of the underlying similarity measures.

4.1 Naive Similarity Assessment

The naive way of introducing LLMs into the traditional similarity-based retrieval
process is to let them directly predict the similarities between the query and all
available cases (see Figure 1b). One way of achieving that is to send query-case
pairs to the LLM and let it predict some score for each pair—just like the idea
of Wilkerson and Leake [36]. However, requesting individual similarity scores
may not lead to a sensible ranking of the cases because the model does not have
any information about the other cases in the case base. To solve this, we use
a feature called structured output that is available in some LLMs such as those
offered by OpenAI.3 This allows us to provide a JSON schema of the expected
response format that we want the model to follow—making it possible to pass
the entire case base in the same context as the query. We propose two variants
of this approach to deal with the fact that generating floating point numbers
is not a trivial task for LLMs: (i) In the similarity-based variant, we define the
expected output as a list of similarity scores in the range [0, 1] for each case in
the case base. (ii) In the ranking-based variant, we define the expected output as
a list of case IDs sorted by their similarity to the query. Since our end goal is to
have similarity scores and not only a ranking, we use Equation (1) to convert the
ranking to similarity scores. Here, rank(q, ci) is the rank of case ci w.r.t. query q

3 https://platform.openai.com/docs/guides/structured-outputs

https://platform.openai.com/docs/guides/structured-outputs
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and |C| is the number of cases in the case base. As a result of this transformation,
the similarity scores are evenly distributed, making it impossible to distinguish
between cases with small or large differences in similarity. If capturing these is
important, the similarity-based variant should be used instead.

sim(q, ci) = 1− rank(q, ci)− 1

|C| − 1
(1)

4.2 Preference-Based Similarity Assessment

Due to the aforementioned problems with LLM-generated similarity scores, the
second approach is based on the idea of replacing the absolute similarity values
with pairwise preferences (see Figure 1c) which are well-known in the CBR com-
munity [15]. Pairwise preferences add an additional layer of abstraction to the
similarity assessment, thus, reducing the complexity of the task from predicting
a coherent ranking or similarity scores to correctly predicting which of two cases
is more relevant to the query. Enumerating all possible pairs of cases leads to
a combinatorial explosion of the requests sent to the LLMs, so we propose two
variants of this approach: (i) In the isolated variant, we send a triple (q, ci, cj)
to the LLM and ask it to predict whether ci or cj is more relevant to q. (ii) In
the batched variant, we send the query and all available cases to the LLM and
request the preferences for all pairs of cases. The isolated variant can be applied
to any LLM, but the batched variant requires a model that can handle larger
contexts and is able to return structured outputs. Similar to the naive approach,
the batched variant is prone to missing or extra pairs in the output—the isolated
is not because there is exactly one request for each pair. This problem can be
mitigated by computing all possible case pairs as an explicit list in advance and
appending them to the prompt. In addition, we send retry requests with relevant
cases for all missing pairs to not overload the LLM with irrelevant data.

As a list of case pairs with predicted preferences does not provide a complete
ranking of the cases, rank aggregation is employed (see Section 2.2). We propose
to use graph centrality measures for this purpose that can be adapted to case
retrieval by transforming the pairwise preference into a directed graph G where
each case is represented as a node and each preference as a directed edge from
the more relevant case to the less relevant one. Depending on the use case, differ-
ent metrics may be useful to turn this graph into a case ranking—for instance,
the link analysis algorithms PageRank [25] and HITS [17]. These have been de-
veloped for ranking web pages, so they are well-suited to deal with incomplete
or even contradictory information. This graph representation also allows for an-
other optimization of the batched variant: After the first request to the LLM,
we check for implicit/transitive preferences in the response and explicitly add
them to the graph. For instance, if the LLM predicts the preferences ci ≻ cj and
cj ≻ ck, we add ci ≻ ck to the graph. This reduces the number of pairs to be sent
to the LLM in the second request, making it faster and cheaper. We repeat the
inference process after the second request to avoid sparse data and consequently
produce a more complete graph.
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4.3 Automated Similarity Builder (SimBuilder)

All techniques discussed above are only involved in the online phase, meaning
that the LLM is invoked for each individual query. This does not match the
traditional way of configuring similarity measures in CBR systems, where the
configuration is done once and reused for all queries. To bridge this gap, we
propose a third approach called SimBuilder shown in Figure 1d where the
domain expert is replaced by an LLM that is instructed to create a similarity
configuration based on the available cases—enabling to shift the LLM inference
to an offline phase. It is assumed that there exists a set of simple, atomic sim-
ilarity measures in the underlying CBR system. The LLM is tasked to select,
combine, and parameterize these measures based on the available cases, creating
an elaborate similarity measure on the case level. The two main challenges are
to expose the available similarity measures to the LLM in an understandable
manner and to represent the necessary parameters—such as min/max values for
interval-based measures—for each function. The bridge between the underlying
CBR system and its similarity metrics and the model can be achieved via func-
tion/tool calling as offered by an increasing number of LLMs. Similar to the
structured outputs used in some of the other approaches, this feature allows ex-
posing functions to the model in a structured way and receive parameters to call
them locally—these can be different for each similarity measure and control their
behavior. For instance, an interval-based measure could have min/max values
as parameters, while a taxonomy-based measure could expect a tree structure
as input. The central difference to a structured output is that function calling
allows to provide multiple JSON schemas in the same request and let the model
decide which one to use. We filter the available measures based on the case rep-
resentation since it would not make sense to use a taxonomy-based measure for
numerical values or an edit distance for textual attributes. Then, the LLM is
prompted to select the best function and predict values for all available param-
eters of the method—allowing to execute it locally later in the online phase. For
example, given an attribute “miles” of a car, the LLM could decide to use an
interval-based similarity measure and provide the parameters “min” and “max”
as 0 and 100, 000, respectively. This enables the model to create a more tailored
similarity configuration that aligns with the specific characteristics of the data.

5 Experimental Evaluation

Having introduced the different techniques for using LLMs for assessing the sim-
ilarity in CBR applications, we evaluate them in this section. We first discuss
our hypotheses, outline the experimental setup—including descriptions of the
three domains at hand—and then present the results of our experiments. The
overall goal of our experiments is to assess the effectiveness (i.e., accurate sim-
ilarities) and efficiency (i.e., fast computations and low cost) of the proposed
approaches. Thus, we compare the LLM-based approaches to the traditional way
of configuring similarity measures in CBR systems.
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H1. The naive ranking method is more effective than the naive similarity method
as LLMs typically struggle to generate precise numerical values.
H2. The preference-based method is more effective than both naive methods
because pairwise assessments are more tolerant to potential errors introduced
by LLMs. Moreover, the batched variant is more effective than the isolated one
as the larger amount of context allows for better informed decisions.
H3. The SimBuilder approach is more efficient than the naive and preference-
based methods because the LLM inference can be done in advance. It is also
more effective because it can be used with larger LLMs that better understand
the semantics of the cases provided.

5.1 Experimental Setup

In this section, we describe the experimental setup of our experiments—that
is, the selection of datasets, evaluation metrics, and language models as well as
notes regarding our publicly available implementation.
Datasets. A total of three datasets is used in our experiments, each represent-
ing a different domain and case representation. The cars corpus [22] with 100
cases uses a simple attribute-value representation with numerical and textual
attributes. The recipes corpus [5] with 40 cases contains semantic graphs repre-
senting cooking recipes. The graphs consist of three different types of nodes with
different attributes. Finally, the argumentation corpus [26] with 110 cases con-
tains argumentative microtexts represented as semantic graphs according to the
Argument Interchange Format (AIF) [10] standard. While the first two datasets
do not provide a distinct set of queries, the argumentation dataset contains 24
queries and corresponding gold standard relevance assessments [6]. The argu-
mentation dataset is also notable for its heavy use of larger textual attributes,
making it infeasible to use taxonomy-based or edit-based distances and instead
relying on embeddings.
Evaluation Metrics. In our work, we are interested in the difference between
multiple rankings, so standard metrics like precision and recall are not suitable.
Instead, we use completeness (CP) and correctness (CR) as proposed by Cheng
et al. [9] which are based on comparing available orders in the form of concordant
and discordant pairs. CP ∈ [0, 1] measures how many elements of the ground
truth ranking are also in the generated ranking while CR ∈ [−1, 1] indicates
whether the generated ranking aligns well (1) or poorly (0) with the ground truth
ranking, or even contradicts it (-1). In addition, we compute the normalized
cumulative discounted gain (nDCG) [16] by using the inverse ranks as query
relevance scores. Compared to CR, this metric incorporates the rank of the
cases, meaning that higher importance is given to the top-ranked cases. Another
relevant factor is the runtime t of the experiments.

To compute these metrics, we need a ground truth ranking of the cases for
each query. As such an expert ranking is not available for some of our datasets,
we use the manual similarity configuration to obtain the ground truth rank(q, ci)
for each query. In addition, we compute a variant where the rank is normalized
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Table 1: Overview of the different approaches and the characteristics of the tested
models. Parameters are measured in billions and price in USD per million input
tokens as reported by OpenRouter.ai.

Size Params Price Models Approaches

Small < 4 < 0.01 Llama-3.2-3b preferences-isolated

Medium 40–120 0.1–0.2 GPT-4o-mini, Llama-3.3-70b naive,
preferences-batched

Large > 400 > 0.8 GPT-4o, o3-mini, DeepSeek-V3,
DeepSeek-R1, Llama-3.1-405b

SimBuilder

to the range [0, k] to ignore smaller and less relevant differences in the ranking
via Equation (2) where ⌊·⌉ denotes rounding to the nearest integer.

rank′k(q, ci) =

⌊
sim(q, ci)−min sim(q, C)

max sim(q, C)−min sim(q, C)
× k

⌉
(2)

Language Model Selection. For our experiments, we distinguish between
three classes of LLMs—small, medium, and large—as shown in Table 1. Depend-
ing on the specific use case at hand, these boundaries may be adjusted—here they
serve as categories to select cost-effective models for the different approaches. In
addition to the model size, we also report the price as it is a crucial aspect for
real-world applications. Initial experiments showed that preferences-isolated is
the most expensive and slowest approach—for each query, all possible query-case
pairs are requested separately—so we use a single small model to evaluate it. For
the preferences-batched and both naive approaches, the case base is sent once
to the model for each query, so we can use medium-sized LLMs for them (but
not large ones due to the cost). The SimBuilder approach, on the other hand,
can be used with larger models. Here, the case base is sent to the LLM once to
create the similarity configuration in the offline phase.

Implementation. We provide an open-source implementation4 in Python that
builds on top of CBRkit [20]. It offers a declarative way of configuring similarity
measures and supports various case representations, including attribute-value
and graphs. To convert pairwise preferences to similarity scores, we use the
arithmetic mean of the two centrality measures PageRank and HITS. Initial
experiments showed that sparse graphs as returned by some LLMs lead to many
identical similarity scores, meaning that the ranking of the affected cases is
arbitrary—combining multiple centrality measures helped mitigate this problem.
We also experimented with individual centrality measures, but did not observe
large differences in the results. For the SimBuilder, we convert the available
similarity functions to JSON in a generic way—currently supporting attribute-
value and graph-based representations. Some of these measures accept rather
complex parameters, so we wrap those in a custom function that only exposes

4 https://github.com/wi2trier/llsim (MIT license)

https://github.com/wi2trier/llsim
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Table 2: Cars results using baseline retrieval as ground truth.

Experiment
CP CR nDCG

t
rank rank′

5 rank rank′
5 rank rank′

5

builder-deepseek-r1 1.000 1.000 0.733 0.907 0.991 0.994 0.463
builder-deepseek-v3 1.000 1.000 0.754 0.920 0.991 0.995 0.485
builder-gpt-4o 1.000 1.000 0.802 0.941 0.994 0.996 0.803
builder-llama-405b 1.000 1.000 0.757 0.923 0.993 0.996 0.438
builder-o3-mini 1.000 1.000 0.787 0.943 0.994 0.996 0.562
naive-rank-gpt-4o-mini 0.335 0.342 0.263 0.352 0.586 0.595 15.9
naive-rank-llama-70b 0.745 0.746 0.164 0.235 0.738 0.754 1936
naive-sim-gpt-4o-mini 0.067 0.069 0.157 0.266 0.324 0.339 51.3
naive-sim-llama-70b 0.642 0.640 0.016 0.166 0.684 0.693 2704
preferences-gpt-4o-mini 0.868 0.871 -0.018 -0.025 0.799 0.807 462
preferences-llama-3b 0.980 0.980 0.069 0.100 0.855 0.874 8673
preferences-llama-70b 0.385 0.385 -0.351 -0.333 0.386 0.396 4128

Table 3: Recipes results using baseline retrieval as ground truth.

Experiment
CP CR nDCG

t
rank rank′

5 rank rank′
5 rank rank′

5

builder-deepseek-r1 1.000 1.000 0.669 0.854 0.980 0.991 149
builder-deepseek-v3 1.000 1.000 0.438 0.623 0.927 0.953 133
builder-gpt-4o 1.000 1.000 0.713 0.883 0.982 0.992 198
builder-llama-405b 1.000 1.000 0.658 0.841 0.975 0.989 173
builder-o3-mini 1.000 1.000 0.663 0.832 0.976 0.988 197
naive-rank-gpt-4o-mini 0.704 0.702 -0.051 -0.061 0.719 0.745 13.5
naive-rank-llama-70b 0.866 0.867 -0.039 -0.033 0.734 0.751 844
naive-sim-gpt-4o-mini 0.594 0.597 -0.136 -0.126 0.648 0.683 36.0
naive-sim-llama-70b 0.827 0.821 -0.063 -0.047 0.705 0.717 1185
preferences-gpt-4o-mini 0.940 0.948 -0.000 0.001 0.799 0.811 305
preferences-llama-3b 0.949 0.954 -0.030 0.020 0.785 0.810 857
preferences-llama-70b 0.809 0.813 -0.139 -0.141 0.696 0.702 4068

a subset to the LLM. In case a request fails—for instance, due to an invalid
response—we retry the generation.

5.2 Results and Discussion

Based on the setup described in the previous section, we now present the results
of our experiments for the three domains, starting with those using the baseline
retrieval as ground truth. For all datasets combined, the cost of our experiments
for the naive and preference-based techniques totaled to a few dollars per model.
Even though using the larger models, the SimBuilder was actually cheaper and
used less than one dollar per model. Its offline runtime—which is not included in
the tables as it is upfront and does not affect the actual retrieval—ranges from
5 to 500 seconds depending on the domain and model.
Baseline Retrieval. The results for the cars and recipes domains are shown in
Table 2 and Table 3, respectively. For the naive and preference-based approaches,
the completeness is less than one, indicating missing or invalid LLM responses.
The cars dataset (which contains more than double the number of cars compared
to the recipes dataset) yields completeness scores below 0.1, meaning that the
model excluded most of the cases from the output. The correctness scores for
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Table 4: Argumentation results using expert rating as ground truth.
Experiment CP CR nDCG t

baseline 1.000 0.220 0.899 147

builder-deepseek-r1 1.000 0.220 0.899 130
builder-deepseek-v3 1.000 0.220 0.899 166
builder-gpt-4o 1.000 0.220 0.899 142
builder-llama-405b 1.000 0.220 0.899 145
builder-o3-mini 1.000 -0.836 0.379 30.2
naive-rank-gpt-4o-mini 0.417 0.008 0.338 27.8
naive-rank-llama-70b 0.703 0.101 0.402 822
naive-sim-gpt-4o-mini 0.260 -0.472 0.302 47.5
naive-sim-llama-70b 0.680 -0.159 0.318 733
preferences-gpt-4o-mini 0.935 0.055 0.335 551
preferences-llama-3b 0.986 -0.142 0.338 2547
preferences-llama-70b 0.628 0.014 0.283 4941

these techniques are mostly close to zero, indicating random rankings. Overall,
the scores are higher for the less complex cars dataset—the graph-based rep-
resentation of the recipes could make it harder for the LLM to understand the
semantics of the cases. The SimBuilder approach however achieves a complete-
ness of 1.0 for all models and a correctness of around 0.75 for the cars dataset
and 0.5 for the recipes dataset. As such, the generated similarity configuration
seems to closely match the expert-driven definitions. We consider this to be a
very promising result, especially given the fact that both domains make use of
rather complex taxonomy-based similarity functions that require a lot of domain
knowledge to configure. Analyzing the effect of rank′5 (i.e., not requiring strict
adherence to the baseline), we see overall improved scores for all approaches.
The metrics for the argumentation domain are missing here as we focus on the
expert ratings in the next section for this corpus. We still ran the experiment
for this corpus and observed similar results as for the recipes dataset.
Expert Ratings. The results for the argumentation domain shown in Table 4
are based on expert ratings as ground truth. Consequently, we do not report the
rank′ scores as no transformation from similarity scores to ranks is needed. We
observe that even the manually defined baseline configuration does not achieve
a correctness or nDCG of 1.0—meaning that in real-world scenarios, it may
not be possible to achieve a perfect ranking of the cases, even with lots of do-
main knowledge. Overall, the findings are consistent with the previous results
with one notable exception: When used with the reasoning model o3-mini, the
SimBuilder achieves the worst correctness score of all approaches. All other
SimBuilder experiments result in the exact same configuration as the expert
one, so the different scores are solely caused by variations of the underlying A*
algorithm (e.g., the order in which mapping candidates are evaluated [4]).
Hypotheses. Regarding the hypotheses, we see that the naive ranking method
is indeed more effective than the naive similarity method, meaning that H1 can
be accepted. However, the preference-based technique is not universally more ef-
fective than the naive ones. The isolated variant tends to outperform the batched
one, ultimately leading to the rejection of H2. Finally, the SimBuilder is more
effective than all other approaches, but not necessarily more efficient. For the
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simple representation of the cars dataset, the SimBuilder is the fastest, but
that is not the case for the graph-based recipes and argumentation datasets.
Thus, we can only partially accept H3.

6 Conclusion, Limitations and Future Work

In this paper, we present three different approaches for using LLMs in similarity-
based retrieval of CBR applications. LLMs are used to assess pairwise similarities
between cases directly, to assess pairwise preferences between cases, and to gen-
erate an expert-like similarity configuration via the SimBuilder approach. We
evaluate them on three different domains using a selection of LLMs to assess
their effectiveness and efficiency. The results show that the SimBuilder per-
forms best and is capable of almost perfectly matching the ranking obtained
via manually crafted similarity configurations, while the other two approaches
struggle to achieve similar results.

We see limitations of our work regarding scaling to large case bases and the
availability of atomic similarity measures: First, scaling to larger datasets could
be challenging with the limited context size of LLMs—especially for preferences-
batched and the naive approaches. This could be tackled through chunking where
the case base is split into smaller parts and that are processed separately and
then aggregated later on. Such strategies are already implemented in CBRkit
and showed decent results in initial experiments. Second, using the SimBuilder
approach requires a set of atomic similarity measures to use as building blocks
for the generated similarity configuration. This could hinder its applicability
in some CBR systems, but there already exist CBR frameworks with a decent
amount of such ready-to-use functions [31].

In future work, we plan to extend our work in several ways. Extending the
evaluation to other domains and case representations to assess the generalizabil-
ity of the approaches is an important next step. We also think that it would
be interesting to evaluate the approaches with user-defined similarities or pref-
erences, serving as a more realistic ground truth. Additionally, experimenting
with fine-tuned LLMs to improve the performance of the approaches is a possi-
ble direction for future work. This could be especially useful for the SimBuilder
approach, where the LLM could be fine-tuned on different case representations
and similarity models to create a very specialized model. As another means of fu-
ture work, we plan to use the approach as part of a RAG process [38]. Compared
to classical RAG, the approach can work on structured data such as databases
by using local similarities instead of simply converting the data into strings and
relying on a vector store. This would allow us to use the LLM as a generator of
the initial solution and the CBR system as a means of refining the solution by
retrieving similar cases and adapting them to the current problem.
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