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Abstract. Finding information online is hard, even more so once you get
into the domain of argumentation. There have been developments around
the specialized argumentation machines that incorporate structural fea-
tures of arguments, but all current approaches share one pitfall: They
operate on a corpora of limited sizes. Consequently, it may happen that
a user searches for a rather general term like cost increases, but the ma-
chine is only able to serve arguments concerned with rent increases. We
aim to bridge this gap by introducing approaches to generalize/specialize
a found argument using a combination of WordNet and Large Language
Models. The techniques are evaluated on a new benchmark dataset with
diverse queries using our fully featured implementation. Both the dataset
and the code are publicly available on GitHub.

Keywords: argumentation · graphs · adaptation · background knowl-
edge · natural language processing

1 Introduction

Due to the sheer amount on information available on the internet, is has be-
come increasingly harder for users to find exactly what they are looking for.
At the same time, traditional search engines like Google purely operate on the
textual layer, neglecting any potentially relevant structural information. These
issues led to the development of specialized systems optimized for certain tasks—
for instance, finding relevant arguments as part of so-called argumentation ma-
chines [28]. However, one fundamental flaw remains: If a user wants to retrieve
information that is not in the corpus indexed by the search engine, it will not
be able to provide relevant results.

To better understand this issue, consider a user wanting arguments relevant
to the following query:

Should we put a cap on cost increases of contracts when changing the payer?

Among others, the argumentation machine retrieved the following result from
the microtexts corpus [25]:
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Rent prices are already regulated in favour of tenants due to existing laws and
the rent index. In view of the high prices for buying flats with existing rent
contracts, these are an unattractive investment.

This argument is already quite relevant, but while the query asked about “con-
tract costs”, the result is concerned with “rent costs”. The relevance would be
even higher if the machine was able to infer that “contract costs” is a generalized
form of “rent costs” and automatically adapts the argument before presenting it
to the user. Whereas the pure retrieval of arguments has been solved by multiple
works [5, 20, 15, 34, 31], adaptation is rather difficult to solve and—to the best of
our knowledge—has not yet been tackled in the literature.

Consequently, our work pursues the following research question: “Given a
user-defined query together with arguments retrieved from a larger corpus, can
we generalize or specialize the results to better match the user’s query and pro-
vide a more relevant and useful set of results?” We tackle the reuse step that
is performed after the retrieval in the context of a larger Case-Based Reasoning
(CBR) [1] system. The main contributions of this paper are as follows: (i) An
approach that extracts the most important keywords of an argument and adapts
them using WordNet [22, 17], (ii) multiple approaches leveraging state-of-the-art
Large Language Models (LLMs), (iii) a hybrid approach where the identified
keywords are adapted using a LLMs and validated with WordNet, (iv) a new
benchmark dataset with diverse queries (including reference rankings for a re-
trieval system and possible adaptation results), and (v) a publicly available im-
plementation3 that powers an experimental evaluation assessing the impact of
the proposed adaptation techniques on a retrieval system.

The presented techniques are in principle applicable to arbitrary types of
texts. Some features of our heuristics—for instance, the identification of rele-
vant keywords—use an argument’s internal structure to make better informed
decisions. We use an established graph-based representation—that is, argument
graphs (see Section 2 for details)—with a large number of corpora available on-
line. A major part of our efforts will be concerned with explainability : Since we
alter the semantics of an argument, we argue that the user must have the ability
to review any automatic change—otherwise the user’s trust may be damaged.

To the best of our knowledge, this is the first paper to apply LLMs to the
reuse phase of a CBR system. These models are particularly good at predicting
the next word given a specific context which is exactly the kind of task we
are trying to solve. We hope to pave the way for further developments in this
area—especially Textual Case-Based Reasoning (TCBR) [35].

The remainder of this paper is structured as follows: Section 2 will intro-
duce the most important foundations, followed by a review of related work in
Section 3. In Section 4, we describe the three different adaptation approaches.
Section 5 provides an experimental results and a discussion of our proposed
approaches. Lastly, Section 6 concludes our findings.

3 https://github.com/recap-utr/arguegen
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Rent prices should be limited by a
cap when there's a change of tenant.

Landlords may want to earn as much
as possible,

and many, consistent with market
principles, are prepared to pay

higher rents,

but that people with the same income
suddenly must pay more and can't
live in the same flat anymore seems

implausible.

Fig. 1: Exemplary argument graph from the microtexts corpus

2 Foundations

In this section, we briefly discuss the foundational concepts and techniques un-
derpinning our proposed approach for argument generalization. To solve this
rather difficult task, we combine multiple fields like Computational Argumen-
tation (CA), CBR, and Natural Language Processing (NLP). We will start by
introducing the type of data we are using: arguments.

2.1 Argumentation Theory

An argument consists of one claim together with one or several premises that
are linked to the claim [24]. The debatable claim can be attacked or supported by
its connected premises [32]. Claims and premises are the smallest self-contained
units of argumentation and are also called Argumentative Discourse Units (ADUs).
Using these building blocks it becomes possible to construct argument graphs to
represent larger discourses. Such graphs make it possible for us to integrate struc-
tural information into the adaptation process. Consider the example shown in
Fig. 1: The blue nodes represent the ADUs and as such store the argumentative
content, whereas the arrows represent relationships between them. Most such
graph have one major claim that defines the overall conclusion of an argument—
in our example, this is the root node.

2.2 Automated Reasoning

As mentioned earlier, we follow the overall methodology of CBR to tackle the
generalization of argument graphs. The basic assumption here is that similar
problems (or cases) have similar solutions. By storing previous problems together
with their solutions in a case base, it is possible to solve new problems with
existing knowledge. CBR is a mere problem-solving methodology, meaning that
it can be combined with various techniques—for instance, Machine Learning
(ML). The branch of Textual Case-Based Reasoning (TCBR) [35] is concerned
with cases stored as texts and as such utilizes NLP techniques. Čyras et al.
propose Abstract Argumentation for CBR (AA-CBR) [12] and thus combine the
Dung framework [16] with CBR. In this paper, we will utilize another reasoning
approach—Analogy-Based Reasoning (ABR) [10, 13]—to tackle the reuse step
of CBR. ABR is based on the assumption that a is to b what c is to d (i.e.,
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a : b :: c : d) [18]. Thus, by finding the triple (a, b, c), we are able to infer the
missing value d [27].

2.3 Background Knowledge

In order to draw sensible inferences with ABR, we need some sort of back-
ground knowledge. Due to our focus on generalization/specialization, the lexical
database WordNet is a fitting candidate. At its core, WordNet is composed of
lemmas that are grouped together to so-called synsets when multiple lemmas
share the same meaning (e.g., the lemmas “price” and “cost” could be grouped
this way). Basically, a synset is an n-gram and thus can include compound words.
In the following, we will also use the term “concept” when referring to a synset.
These synsets are linked via six relationship types, out of which we will only
consider hypernyms (i.e., generalizations) and hyponyms (i.e., specializations).
A crucial component of all synsets and lemmas in WordNet is the accompanying
Part of Speech (POS) tag, allowing to differentiate between the activity “shop”
and the business “shop” [26]. For each synset, WordNet provides one defini-
tion along with multiple exemplary real-world uses of the underlying lemmas
that may be used as additional contextual information for NLP operations like
computing semantic similarities.

2.4 Natural Language Processing

Providing an introduction to all aspects of NLP is out of scope for this paper, we
will instead focus on the advanced concept of LLMs here. They use the trans-
former architecture [33] which also powers models like Bidirectional Encoder
Representations from Transformers (BERT) [14]. Compared to plain word em-
beddings like word2vec [21], transformers use an internal concept of attention
that allows them to produce contextualized embeddings (i.e., the same word may
have different vectors depending on its context). They may be fine-tuned on a
new dataset, making it possible to apply them on specialized tasks—for instance,
Sentence-Transformers (STRF) [29] have been fine-tuned to compute semantic
similarities between sentences. Generative Pre-trained Transformer (GPT) mod-
els (a type of LLM) use a vastly higher number of internal parameters and are
trained on larger corpora, enabling them to show state-of-the-art performance
on a variety of tasks even without a fine-tuning step. Instead, they make use
of few-shot learning (i.e., providing some examples with expected output) and
prompting to instruct the model [8].

3 Related Work

In our literature research, we did not find prior works on generalizing or spe-
cializing argument graphs in a CBR context. Thus, the upcoming section will
highlight a selection of contributions to (i) the case-based retrieval of argument
graphs and (ii) the adaptation of arguments.
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The retrieval of arguments has been covered by many works in recent past—
for instance, by the search enginesArgs.me [34] andArgumenText [31]. These
approaches however deal with simple argumentation structures—that is, they
only consider individual ADUs and their stances (pro/con), not complete ar-
gument graphs. Bergmann and Lenz investigate the use of CBR methods for
retrieving argument graphs based on a structural mapping between user queries
and the stored cases [5, 20]. For each node in the user query, a matching node
in the case is determined by comparing the embeddings of the node’s content.
These local similarities are then aggregated to form a global measure incorpo-
rating both structural and semantic aspects.

Regarding the adaptation procedure itself, there are two perspectives on this
task: (i) Change the structure of the graph or (ii) modify the textual content
of the ADUs. A major issue for the former are so-called co-references—for in-
stance, the word “he” might refer to a person described in another node. The
latter perspective can be tackled using TCBR—which is concerned with textual
adaptation and has its roots in the field of legal reasoning [2, 30]. Bilu and Slonim
propose a method to recycle claims for the use in a new domain with the help of
Statistical Natural Language Generation (SNLG) [6]. CBR and ABR have been
investigated in the area of mediation [3]. The underlying commonsense knowl-
edge has also been applied to the area of argumentation in the past via manual
annotation [4]

4 Case-Based Adaptation of Argument Graphs

Having provided the necessary foundations together with relevant works in the
field, we will now present our proposed approach for adapting arguments. We will
focus solely on reusing arguments, leaving the retrieval to the system introduced
in [5] (see Section 3 for details). A total of 6 techniques divided in three broader
categories will be introduced in this section: (i) two WordNet-based variants,
(ii) three LLM-based ones, and (iii) one hybrid one. In addition to the reference
implementation in Python used in Section 5, we present a high-level overview
of all algorithms using flowcharts with exemplary content. Consistent with the
research question (see Section 1), our overall goal is defined as follows: Show
that it is possible to increase the relevance of a ranking produced by a retrieval
system w.r.t. a given query by generalizing/adapting the found cases.

We consider both non-interactive (i.e., the adaptation happens automati-
cally) and interactive (i.e., the user initiated the adaptation process) scenar-
ios. In the former, the adaptation is performed automatically after the retrieval
without any sort of interaction from the user. In the latter, a user initiates the
adaptation process manually for a single case. To tailor the results to their needs,
the user provides so-called adaptation rules (see Section 4.1) to the system that
serve as a starting point for the process. All of our approaches therefore have
the ability to honor certain wishes w.r.t. the adaptation.
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4.1 Case Representation

Before proceedings with the algorithms, we will briefly establish some common
notation: Each case g ∈ CB of our case base CB is an argument graph and
as such is composed of a set of ADUs adus(g) := {a1, . . . , an}. Concepts (i.e.,
the keywords of the graph’s ADUs) ci ∈ C are mapped to a set of synsets
{s1, . . . , sn} ∈ S with S being all nodes of WordNet. Each such concept c is an
n-gram (typically n ≤ 3) together with a POS tag. For each such concept c, we
also store its POS tag. The user-provided query q is an argument graph (just
like the stored cases), whereas the rules {(c1, c2), . . .} := R are source-target
tuples of concepts that need to be replaced. The function vec(x) denotes the
vector/embedding of an arbitrary text x.

Based on this representation, we define the function score(c) to assess the
“relevance” of a concept c when (i) filtering relevant concepts to be extracted,
(ii) comparing multiple adaptation candidates of a concept, and (iii) determining
a sensible order when applying the adaptations. The score is an aggregation of
multiple metrics that make use of so-called related concepts in the spirit of ABR
(a : b :: c : d). Let us give you a concrete example: We found out that the
concept “landlord” (c) should be adapted know that the general topic of an
argument shall be generalized from “rent” (a) to “cost” (b). We now try to find
a generalization d of “landlord” that has a high similarity to both “cost” and
“landlord”. In our paper, such a similarity function shall produce a value in [0, 1]
when given two concepts c1, c2—for instance (i) the semantic similarity between
the examples of connected synsets, (ii) the path-based distance of these synsets
within WordNet, and (iii) the semantic similarity of the original ADUs. For a
complete list, we refer the reader to our reference implementation. A concept’s
global score is finally defined as the arithmetic mean of all these local measures.

4.2 Adaptation with WordNet

With the case representation introduced, we will now proceed with presenting
the first adaptation approach that is built on WordNet. In essence, we extract the
most important keywords of an argument and follow their hypernym/hyponym
relations to derive appropriate generalizations/specializations. This approach is
explainable by default since the reasoning chain is completely known (something
which is not the case for all other techniques that we propose). The procedure
is depicted in Fig. 2 and discussed in the following paragraphs.

Generate Rules In order to come up with adaptations for individual concepts,
we first need to determine how the overall topic of the argument should be
changed. In the context of ABR (a : b :: c : d) that would mean finding the
variables a and b. We generate them by extracting the keywords of the user’s
query and the argument’s major claim with an established extraction algorithm
like YAKE [9]. We then determine the shortest paths between the major claim’s
and the query’s keywords and use those pairs having the smallest distance as
our adaptation rules. For our previously used example, the resulting rule could



Case-Based Adaptation of Argument Graphs 7

Original Text

A cap on rent increases upon tenant
change is therefore not to be supported.

Generate Rules

rent → cost

Extract Concepts

rent, cap, change, increase, tenant

Find Hypernyms/Hyponyms

cap → {control, policy, . . . }
tenant → {payer, person, . . . }

Filter Adaptations

rent → cost
tenant → payer

Apply Adaptations

A cap on cost increases upon payer
change is therefore not to be supported.

Fig. 2: Overview of the WordNet-based adaptation pipeline with exemplary val-
ues.

be “rent → cost”. Note that we do not need our concept score in this stage. In
case the adaptation is performed interactively (i.e., the user provided rules), the
system skips this step.

Extract Concepts Now that we know the left part of the ABR equation, we can
move to the right part, starting with variable c. Since we determined both a and
b through a keyword extraction algorithm like YAKE, we will do the same here
to receive a set of concept candidates. When for example presented with the rule
“rent → cost”, one such candidate could be “landlord”. We then compute the
score of each candidate, enabling us to define a threshold that each candidate has
to reach. The remaining ones are ordered by their score and optionally selected
through a cut-off—that is, only the best x candidates are used. After this step,
we have a list of extracted concepts which can be generalized.

Find Hypernyms/Hyponyms The only variable missing in the ABR equation is
d—that is, the generalized/specialized concept. We will first be concerned with
finding potential adaptation candidates before filtering these based on their com-
puted concept scores. Two variants for fetching those candidates are proposed:
(i) Directly use the synsets connected to c (taxonomy-based) or (ii) replicate the
WordNet paths between a, b with c as the new start node (analogy-based). The
taxonomy-based one is faster to compute, but has the drawback of needing to
compute the score for more concepts (since they are not filtered based on the
paths between a and b). Another difference is that the analogy-based variant is
much more strict on the potential adaptation targets.

Filter Adaptations We now have multiple candidates for the variable d and
are left with selecting the best one. The best synset is chosen based on the
corresponding concept score, leaving the task of selecting the correct lemma for
the given context. Again, we make use of ABR and select the lemma where the
word embedding difference vec(c)− vec(d) is closest to vec(a)− vec(b).

Apply Adaptations Now that all variables of the equation a : b :: c : d are known,
we can finally insert them into the Argument Graph (AG). In an effort to min-
imize the risk of applying “harmful” adaptations to the argument, we propose
an iterative technique: Instead of applying all identified adaptations at once, we
insert them one after each other and compute the similarity of the case to the
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Original Text

A cap on rent increases
upon tenant change is
therefore not to be sup-
ported.

Generate Prompt

A user entered the following query into
an argument search engine: . . .
The search engine provided the user with
the following result: . . .
Instructions: . . .

Replace text

A cap on cost increases
upon payer change is there-
fore not to be supported.

Fig. 3: Overview of the LLM-based adaptation pipeline with exemplary values.

query after each operation. As soon as the similarity score is identical or even
reduced, we stop. The adapted lemmas are correctly inflected to minimize gram-
matical errors. To minimize the runtime impact, we only consider the semantic
similarity of the complete argument and skip the expensive structural matching.
This optimization is consistent with the findings of Bergmann and Lenz [5, 20]
who report that the semantic retrieval alone produced almost the same ranking.

4.3 Adaptation with Large Language Models

We were mostly concerned with heuristics in the past section. Moving to LLMs,
the focus now shifts towards prompt engineering as introduced in Section 2.
These prompts have different requirements for different LLMs, so we will discuss
two paradigms here: (i) edit-based models and (ii) chat-based models. The former
ones are a perfect fit for the use-case of adapting arguments since they are
specialized in editing texts based on an instruction. The latter family of models
has seen an increasing interest by researchers lately and are equally relevant
for our work as they are aware of previous responses—an ability that could be
valuable for our task. Please note that due to space constraints, we are unable
to present the complete prompts and instead show an excerpt of our prompt
template in Fig. 3. We refer the interested reader to our implementation for
more details.4

Edit-Based Models The approach here is relatively simple: As an instruction, we
present the model the query together with the case. For each ADU, the task is
then to make it more relevant to the query by generalizing the presented snippet.

Chat-Based Models These types of models allow greater degree of freedom. To
account for that, we propose two different ways of approaching the adaptation
of arguments with chat completions. We either try to (i) replicate the edit-based
model and let the chat-based LLM rewrite an ADU’s content or (ii) replicate
the WordNet approach and let the model predict an adapted text together with
the accompanying replacement rules. In other words, the LLM may rewrite the
whole text in (i) whereas it should only substitute certain keywords in (ii). This
is also why (i) is not explainable whereas (ii) is to a certain degree: There is
no guarantee that the predicted texts and rules are consistent with each other,
potentially causing user confusion if presented as is.

4 https://github.com/recap-utr/arguegen
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Original Text

A cap on rent in-
creases upon tenant
change is therefore
not to be supported.

Generate Rules

rent → cost

Extract Concepts

rent, cap, change,
increase, tenant

Generate Prompt

A user entered the following query into
an argument search engine: . . .
The search engine provided the user with
the following result: . . .
Instructions: . . .

Verify Adaptations

rent → cost
tenant → payer

Apply Adaptations

A cap on cost increases upon payer change is
therefore not to be supported.

Fig. 4: Overview of the hybrid adaptation pipeline with exemplary values.

For both techniques, we again present the query together with the retrieved
argument as context to the model. Only for (ii) we add an instruction that
edits should be limited and a list of adaptation rules has to be provided. We
then iteratively let the model predict an output for each ADU and add those
responses to the context presented to the LLM.

4.4 Hybrid Adaptation

While LLMs often generate text that on first glance seems correct, the results
are not guaranteed to be valid in the real world or even consistent with previous
responses within the same “conversation”. We consequently propose a hybrid
adaptation approach that tries to combine the best of both worlds: The word
prediction capabilities of LLMs and the consistency checks possible with the
taxonomy modeled in WordNet. The process is depicted in Fig. 4.

Compared to the WordNet-based approach seen in Fig. 2, the adaptation
and filtering steps are replaced by prompt generation and validation steps. The
remaining ones—that is, rule generation, keyword extraction, and application
of adaptations—are used unchanged, so we refer to Section 4.2 for details. The
new prompt is similar to the one used in Section 4.3: The LLM yet again re-
ceives the query and case as context, but this time we do not preset a single
ADU to the model, but instead the output of our concept extraction step. In
principle, we now have the same output as with the WordNet pipeline, but the
predicted adaptations are not guaranteed to be correct. We argue that this at-
tribute is a central aspect when dealing with arguments, so we add an additional
verification step: For each adaptation rule, we check if it (i) is present in Word-
Net and (ii) does not exceed a (configurable) path distance threshold from the
original concept. Finally, use the iterative replacement technique introduced in
Section 4.2 to apply the generated adaptation rules. A side-effect of this tech-
nique is that it needs fewer predictions by the LLM (one per case here versus
one per ADU for Section 4.3) and thus reduces the costs associated with the
whole procedure.

5 Experimental Evaluation

The following section provides an experimental evaluation of our proposed ap-
proaches for the adaptation of argument graphs. We will define the hypotheses
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guiding our evaluation, present the experimental setup along with the metrics
used, and provide a detailed analysis of the results. Since dealing with arguments
often entails a subjective aspect, our evaluation will not solely rely on numbers
and supplement the experiments with a detailed review of an exemplary adapted
argument. Consequently, our quantitative evaluation in Section 5.2 will be ac-
companied by a case study in Section 5.3.

Let us start by introducing our working hypotheses that all contribute to
answer our research question formulated in Section 1: “Does at least one adap-
tation approach for argument graphs lead to more relevant/useful results—and
if so, which one?”

H1. The generated adaptation rules are a decent approximation the ones crafted
by experts.

H2. The similarity of an adapted case w.r.t. to the query is higher than that of
the original retrieved case.

H3. By combining the taxonomy of WordNet with the prediction capabilities
of a LLM, the hybrid approach performs best.

H1 and H2 aim at making the rather vague notion of “better results” measurable
and are complemented by H3 that checks whether the hybrid technique produces
the best results w.r.t. those hypotheses. It is worth noting that in our evalua-
tion, we focus solely on the generalization aspect of our proposed approach for
argument retrieval. While specialization is an equally important task, this focus
allows us to discuss the different techniques in more detail. Specialization can
be seen as the opposite of generalization, meaning that these two directions may
be swapped rather easily.

5.1 Experimental Setup

We wrote a fully working application in Python to enable running our experi-
ments. In an effort to embrace reproducibility, both the software and our dataset
(see below) are freely available under the permissive MIT license.5 Our concept
score relies partly on semantic similarity measures (i.e., embeddings). We run the
experiments with plain fastText (FT) [7] as well as the contextualized Universal
Sentence Encoder (USE) [11] and STRF. For the LLMs, we use the GPT family
of models developed by OpenAI that have been popularized through ChatGPT.6

Corpus As a data source containing AGs, we use the well-known microtexts
corpus, containing a total of 110 graphs with a mean number of five ADUs per
graph. It is composed of 23 distinct topics with relatively similar cases. Out
of these, we selected nine topics based on their number of cases, leading to 62

5 https://github.com/recap-utr/arguegen
6 We used the following models: FT: en core web lg from spaCy, USE: v4,
STRF: multi-qa-MiniLM-L6-cos-v1, edit-based LLM: text-davinci-edit-001,
chat-based LLM: gpt-3.5-turbo
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graphs. Each of these has been annotated with a query for a retrieval system as
well as a list of benchmark adaptations independently by two experts, resulting
in a total number cases of 124. The experts already had experience with AGs
and were given detailed annotation guidelines. Both of them received the same
cases—making it possible to determine the Inter-Annotator Agreement (IAA)—
and were told not to talk about the task with each other. They were also told to
order the generalizations based on their importance s.t. the adaptation having
priority is at the top. For example, when presented with the argument shown in
Fig. 1, one expert created the query “Why should we not put a cap on cost of
contracts when changing contractual payer?” Based on the case and the query,
they created the three generalizations (i) rent → cost, (ii) tenant → payer, and
(iii) flats → objects.

Annotation Reliability We will now determine the IAA between the annotations
of the two experts to assess the reliability of the gathered data. Each expert
assigned multiple rules to a case, thus we use Krippendorff’s α [19] together with
Measuring Agreement on Set-Valued Items (MASI) [23] as a weighting method
for sets of values. Each rule is a tuple (source, target), meaning that we can
differentiate between two perspectives of the IAA: (i) Treat identical sources as
a perfect agreement (thus ignoring the specified target) or (ii) only treat rules as
perfect agreement where both source and target match. Both perspectives yield
quite poor agreement scores of (i) 0.20 and (ii) 0.03. Krippendorff recommends
to discard all values < 0.667 and as such tells us to not rely on the gathered
data. Even if we only investigate the first rule (i.e., the one deemed to be the
most important one by the experts), we only receive scores of (i) 0.44 and (ii)
0.08. The main conclusion we can draw from these annotations is the fact that
argumentation in itself is highly subjective. As such, a generalization of the
system might be sensible even though it does not perfectly resemble the ground
truth—affirming the need for a case study.

5.2 Quantitative Results

With the setup explained, we may now proceed and conduct experiments to as-
sess our hypotheses. We will use the standard Information Retrieval (IR) mea-
sures Precision P , recall R, and the ranking-aware nDCG. We have already seen
in the last section that the IAA of correct sources and targets is almost zeros.
Consequently, these IR metrics are computed by comparing the sources of the
system and expert rules—consequently treating the latter as our ground truth.
We will additionally report the metrics precision P@1 and recall R@1 for the
first rule as well. Lastly, we measure the similarity improvement sim↗ which is
defined as the similarity of the adapted case to the query divided by the simi-
larity of the original case to the query—that is, simadapt / simorig—and indicates
whether we succeeded in making the case more relevant to the user’s query.

Before presenting our results, we need to discuss the edit-based LLM ap-
proaches. As mentioned in Section 4.3, these techniques directly alter the text
and provide no trace of the changes which may be problematic for the domain of
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argumentation where factual correctness is crucial. As part of our experiments,
we noticed that most ADU texts are changed completely and at the same time
tend to be longer than their unmodified counterparts. We also faced issues when
parsing the LLM responses—for instance, texts like the following were predicted:
“This segment is not directly relevant to the presented query, but it could be
adapted by changing . . . ” Due to these inconsistencies and the fact that we can-
not apply our metrics to them, we need to skip the evaluation of both edit-based
models.

We will now proceed to discuss the findings based on the results depicted in
Table 1. Among all methods, the chat-based LLM performs worst and even is
the only one showing a decrease in semantic similarity. The WordNet approaches
show different results depending on the underlying embedding model: FT already
predicts a high similarity value between the case and the unmodified case, thus
the improvement only changes slightly. It also shows that these plain embeddings
are not as well suited as a heuristic to determine adaptation rules—all metrics are
lower compared to the contextualized USE or STRF. The analogy-based heuristic
delivers worse results than the taxonomy-based on across the board. Moving to
the hybrid approach, you may have noticed that we tested two validation setups:
lenient and strict. The lenient one accepts all adaptation rules that are part of
WordNet, whereas the strict one only allows concepts in close vicinity to be used
as rules. With lenient validation, we observe a higher recall paired with a lower
precision. Strict validation leads to the exact opposite situation, meaning that
both models are viable depending on the user’s preference. The results w.r.t.
the most suitable embedding models correlate with our findings of the WordNet
approach: contextualized ones yield better metrics.

When analyzing the runtimes of the methods we get mixed results: On av-
erage, the WordNet techniques need 5s with FT, 20s with USE and 30s with
STRF per case. For the LLM based approaches, measuring the time is rather
challenging due to rate limits imposed by OpenAI: once such a limit is reached,
an exponential backoff has to be applied. With that in mind, we observed typical
runtimes of 50s for the chat-based LLM and 25s for the hybrid technique. While
the former performs one request for each ADU of an argument, the latter only
requires one request per case, reducing the impact of the rate limits. Overall,
the processing time is not optimal for interactive use—only WordNet wth FT
could respond within a few seconds.

We will finish the quantitative evaluation by assessing our three hypotheses.
To fully accept H1, our models would need to produce perfect precision/recall
scores, which is not the case here. At the same time, we have seen that even
two human annotators have no strong agreement, making it a difficult decision.
Given the fact that the first adaptation rule is correct almost 80% of the time
(see P@1) for the best performing models, we tend to cautiously accept H1. The
situation is easier w.r.t. H2: Both WordNet and the hybrid technique yield more
than 20% increase of the similarity score, leading to an acceptance of H2. Now we
are only left with H3—is the hybrid approach the best one? The lenient variant
has the best scores for R,nDCG, sim↗, whereas its strict counterpart boasts the
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Table 1: Evaluation results the concept-based adaptation approaches

Approach P R P@1 R@1 nDCG sim↗

WordNet (Analogy, FT) .283 .433 .598 .155 .377 +1.03%
WordNet (Taxonomy, FT) .304 .448 .620 .165 .400 +1.07%
WordNet (Analogy, USE) .515 .412 .725 .193 .413 +16.3%
WordNet (Taxonomy, USE) .517 .426 .717 .191 .420 +16.8%
WordNet (Analogy, STRF) .519 .473 .770 .207 .450 +20.7%
WordNet (Taxonomy, STRF) .525 .474 .777 .211 .450 +21.3%

LLM (Chat-based) .049 .226 .050 .010 .088 −1.64%

Hybrid (Strict, FT) .501 .357 .644 .170 .363 +0.54%
Hybrid (Lenient, FT) .304 .437 .664 .178 .410 +0.86%
Hybrid (Strict, USE) .587 .442 .714 .190 .432 +15.5%
Hybrid (Lenient, USE) .361 .544 .738 .197 .494 +23.5%
Hybrid (Strict, STRF) .590 .452 .798 .218 .445 +18.3%
Hybrid (Lenient, STRF) .353 .528 .738 .200 .483 +23.5%

highest values for P , meaning that we tend to accept H3. This is also confirmed
by our experience when running the experiments: The hybrid approach seems to
be quite robust and in most cases comes up with adaptations that are sensible.
The same is not true for the other approaches—they are more likely to predict
generalizations that make it harder to understand the argument afterwards.

5.3 Case Study

We have now discussed how the approaches perform w.r.t. the evaluation met-
rics. To complement these numbers, we will in the following examine concrete
adaptation outcomes based on the argument graph depicted in Fig. 1. An ex-
pert has created a query together with the corresponding adaptation rules—in
fact, this example is part of our benchmark dataset used in the previous section.
Please note that due to space constraints, we are unable to show full argument
graphs and instead decided to present the beginning of each argument in plain
text instead. The concepts changed from the original text are marked in italics.

Query: Should there be a cap on annuity increases for a change of remunerators?
Expert: Annuity prices should be limited by a cap when there’s a change of renumer-

ator. Property owners may want to earn as much as possible, and many, consistent
with market principles, are prepared to pay higher annuities, . . .

WordNet (Taxonomy, STRF): Rent prices should be limited by a cap when there’s
a change of remunerator. Landlords may want to earn as much as possible, and
many, consistent with market principles, are prepared to pay higher rents, . . .

LLM (chat-based): Annuity increases should be limited by a cap when there’s a
change of remunerators. Annuity providers may be prepared to offer higher in-
creases consistent with market principles, . . .Setting a cap on annuity increases in
case of a change of remunerators is necessary since sudden changes in income and
unaffordable annuity increases are unacceptable.
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Hybrid (Lenient, STRF): Rent costs should be limited by a cap when there’s a
change of remunerator. Landlords may want to earn as much as possible, and
many, consistent with economy principles, are prepared to pay higher rents, . . .

The conclusions one can draw from this example correspond to those of
the previous section. The LLM reformulates large parts of the text and even
adds new content at the end—an undesired behavior for our use case. The case
adapted through WordNet only has one, but correct, adaptation: “tenant →
remunerator”. In addition to this one, the hybrid approach adapted “market →
economy” which is equally sensible even though it is not part of the expert rules.
When inspecting the generation process of the hybrid approach, we observed that
many more rules were generated—for instance “rent → annuity”. These were
however not applied since they did not increase the similarity of the case to the
query as much as other rule combinations. As such, it may not be the prime goal
of an adaptation approach to maximize the similarity through generalization—
an aspect that should be further investigated as part of future work.

6 Conclusion and Future Work

In this paper, we successfully designed and implemented an approach for gener-
alizing argument graphs in the context of CBR. With the help of a new bench-
mark corpus, we demonstrated that the similarity between a retrieved case and
a user’s query can be increased by more than 20%. This is made possible by
combining the taxonomic information obtained from WordNet with the gener-
ative powers of recent LLMs. Our tested approaches provide an easy-to-follow
trace which changes have been made to an argument which is crucial to gain a
user’s trust. Revisiting the initial research question—can we increase the rele-
vance of retrieved arguments through adaptation—it is now possible to answer
it with a cautious yes: Despite needing more working in the future, our results
are promising and show the potential even at this early stage. Given the low
IAA of our benchmark corpus, using expert rules as a ground truth for this task
should be questioned due to the inherent subjectivity involved in the annotation
process.

In future work, one may use even more powerful LLMs to perform this task.
Additionally, it may be worthwhile to fine-tune a LLM specific to generaliz-
ing/specializing argument graphs, the main obstacle here is the lack of adequate
training data. Another useful aspect could be the introduction of a structural
component to the adaptation—for instance, to remove nodes that are no longer
relevant. Lastly, the runtime should be improved to enable the use of our ap-
proach in interactive scenarios.
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